Step 1 in ROP399 – What’s my project?

This week I finally decided on my project topic!

During last week’s lab meeting, Dr. Tyrrell brought up some potential topics for us to choose from. This included determining the appropriate sample size for machine learning, class imbalance problem, participating in the dental project and the ultrasound project that has just been brought up.

After the lab meeting, I talked to Wenda and Ariana regarding the dental project that they have been working on. This was the project that I wanted to be in the most primarily because I intend to go to dental school after graduation, and being involved in a dental project would offer more exposure to this field. However, after the brief introduction and update on the current progress by Wenda and Ariana, I realized that there might not be much to do as a complete project. Hanatu, an independent research student, would also be working on this project, leaving fewer gaps that need to be addressed for the project. Because my expectation is to work on a project independently on a topic where there’s plenty of freedom, I decided to change gears and look at other ideas.

The class imbalance topic was the next thing that caught my interest. Indranil, who happened to be my mentor before I joined the lab, has been working on the class imbalance project before. I immediately contacted him regarding this project and got his project report. I was told that this topic is more technical and less clinical than the dental project, so I didn’t know if I would like the topic. Surprisingly, I found it really interesting and has great implications. Indranil studied the effect of class imbalance using images in the IRMA database and applied the random forest model. By manually changing the sample size of one class, he found that as the proportion of the imbalanced set goes up, the overall accuracy of the model decreases, while the accuracy for the imbalanced class increases. I found it interesting and useful, as class imbalance can be very common in any dataset, especially in medical imaging. Studying its effect can help identify this issue when machine learning is applied to assist with medical imaging.

I then met with Indranil on the possible projects on this topic, and the most natural one would just be investigating which method can better mitigate the class imbalance problem – as a continuation after studying its effects. Next, I researched on any existing literature on this topic specifically in medical imaging, and very little was found. The most commonly used methods for class imbalance include over-sampling, under-sampling, and changing the weight for the imbalanced class coefficient in the cost function. I met with Dr. Tyrrell, he liked the idea for my project, and suggested that I focus on these 3 main methods (mentioned above).

I am excited about my project (and most importantly, really interested). I decide to ask for the code that Indranil used to do the image preprocessing and creating imbalanced classes as a starting point. For my next steps, I’m also planning to learn more about the different methods in addressing this problem as well as how to code in Python.

Looking forward to working on my project!

Wendi
Sep.28, 2018

Squeezing in a Little Time for ML this Past Summer: John Valen’s Experience

My name is John Valen. Having recently completed my undergraduate degree in statistics and economics here at U of T, and soon moving on to pursue my Master’s in statistics in Europe, the Medical Imaging Volunteer Internship program seemed almost tailored to my goal of getting valuable research experience within a constrained time window. Over the course of only several months this summer, I’ve had the pleasant and enriching experience of contributing ideas and code to the project that summer ROP student Wenda Zhao undertook for the dentistry department at U of T, along with the guidance and contributions of ML lab leader Hershel Stark.

Wenda’s blog post (see here) neatly summarizes the goal of this project, one whose aim is to determine the likelihood that a misdiagnosis may occur, depending on the degree of damage to the dental plate being used for X-rays. Contributions I’ve helped make in particular include:

– Creating sparse matrix representations of the grey scale X-ray images themselves in order to economize on memory and run-time performance
– Hand-engineering features: once the artifacts (damage such as scratches, dents,
blotches, etc) were segmented out via DBSCAN, they were characterized by a variety of different metrics: size (pixel count), average pixel intensity (images are grey scale), location (relative to the center of the plate image), etc. 

– Training a K-Means algorithm to cluster segmented artifacts from the dental plate images based on these hand-engineered features, whereby clustering them in this unsupervised manner gave us insight on their properties;

And much more. If you are not familiar with this machine learning lingo, then do not worry; I was hardly exposed to it myself before I started working in this lab. I went in knowing close to nothing practical and a whole lot theoretical, and came out knowing quite a little more in the way of the first one. Fine, a lot more: or
so I like to think. It may not seem clear how my contributions can be used in the future to help answer the ultimate question. The truth is, nothing is really clear at the moment. The project is still on-going and I intend to keep up with it, making contributions remotely to it while I am away in Belgium pursuing my Master’s degree. This is the greatness of it all, the amount of flexibility we have in answering these questions leaves a lot of room for creativity and contemplation. 

All in all, from my own perspective (which has been greatly expanded over the course of the summer), the volunteer program was a perfect means to experience the sheer amount of work that is enthusiastically undertaken by serious students in answering these important questions. I hope that I too can now consider myself at the very least climbing to their ranks while I move on to other and more numerous serious pursuits in my life. 

Good luck to you all, and do not underestimate yourselves.


John Valen

Summer 2018 ROP: Wenda’s in the house!

Hello everyone, my name is Wenda Zhao. I’m starting my fourth year in September majoring in neuroscience and pathobiology. I did a research opportunity project (ROP) 399 course with Dr. Tyrrell this summer. And I’m here to share some of my experiences with you.
Today is a hot and humid Friday in southeast China, where I’m back home from school for the rare luxury of a short break before everything gets busy again. Summer is coming to an end, so is my time with Dr. Tyrrell and his incredible team, some of whom I have got to know, spent most of the summer working with and befriend. I have just handed in my report for the project I did over the past three months on the segmentation, characterization and superimposition of dental
X-ray artifacts.
And now, looking back, it was one of the best learning experiences I have ever had, through an enormous amount of self-teaching, practicing, troubleshooting, discussing and debating. As with all learning experiences, the process can be long and bewildering, sometimes even tedious; yet rewarding in the end.
 
It all began on a cold April morning, with me sitting nervously in Dr. Tyrrell’s
office, waiting for him to print out my ROP application and start off the interview. At that point, I just ended my one-year research at a plant lab and was clueless of what I was going to do for the following summer. Coming from a life science background, I went into this interview for a machine learning project in medical imaging knowing that I wasn’t the most competitive candidate nor the most suitable person to do the job. Although I tried presenting myself as someone who had had some experience dealing with statistics by showing Dr. Tyrrell some clumsy work I did for my previous lab, the flaws were immediately noticed by him. I then found myself facing a series of questions which I had no answers to and the interview quickly turned into what I thought to be a disaster for me. I was therefore very shocked when I received an email a week later from Dr. Tyrrell informing me that I had been accepted. I happily went onboard, but joys aside, part of me also had this big uncertainty and doubt that later followed me even to my first few weeks at the lab.
 
At the beginning, everything was new. I started off learning the software KNIME, an open-source data analytics platform that is capable of doing myriads of machine learning tasks. I had my first taste doing a classification problem, where we trained a decision tree model to identify a given X-ray to either be of a hand or a chest. It was a good introductory task to illustrate all the basic concepts in machine learning such as “training set”, “test set”, “input” and “output/label”. We ended up obtaining an accuracy of around 90% on the test set. That was the first time I witnessed the power of machine learning and I was totally amazed by it. I spent the next week or so watching more videos on the topic including state of the art algorithms such as convolutional neural network (CNN). While absorbing knowledge everyday was fun, I was at the same time a little lost about the future of my project. I began to realize that this experience is going to be very different from my past ones in wet labs, where a lot of the times you were already told what to do and all you need is to conduct the experiments and get the results. Here the amount of freedom that I have on my schedule, task and even the project itself was refreshing but at the same time terrifying. On retrospect, I considered myself lucky for that it was around that time of lost when the Faculty of Dentistry proposed a collaboration with us, which ended up being my project for the summer.
 
The dentistry project, as we so called, concerns a type of dental X-ray sensor called Phosphor Storage Plates (PSPs) which are very commonly used because of its easy placement in the oral cavity and the resulting minimum discomfort. The sensors, however, can accumulate damages over time, which would show up in the final image as artifacts with various appearances. Such artifacts could get in the way of diagnosis; thus, the plates need to be discarded before it’s too damaged. But how damaged is too damaged? For the moment, nobody has answers to that. Our goal is to use machine learning to learn the relationship between artifacts and whether they would affect diagnosis. Eventually, we can use that model to make predictions for a given plate and offer dentists advice as in when to discard it. The entire project is huge and the part we played in this summer mainly contributes as preparatory work. We segmented the artifacts from the image and clustered them into five groups based on 9 hand-engineered features. This characterization of the single artifacts can serve as the input for the model. We also created a library of superimposed images of artifact masks and real teeth backgrounds to mimic images taken with damaged sensors in real clinical settings. We did this so that dentists can take a look at these images and give a diagnosis. Comparing that with the true diagnosis, we can obtain the labels for whether a given artifact will affect diagnosis or not. And this will be the output of the model. The testing of these images is currently underway, and the results will be available in early September for further analysis.
 
With the project established and concrete goals ahead, the feeling of uncertainty
gradually went away. But it was never going to be easy. There were times when
we hit the bottleneck; when our attempts have failed miserably; when we had to give up on a brilliant idea because it didn’t go our ways. But
after stumbling through all the challenges and pitfalls, we found ourselves new. I was a bit lost at the beginning of this summer. But over the summer I learned
a lot about the very cool and growingly crucial field of machine learning; I grew a newfound appreciation for statistics and methodology; I picked up the programming language python, which I had been wanting to do for years and, most importantly, I did more thinking than I ever would if I were to just follow instructions blindly. And in the end, I believe that science is all about thinking. So for you guys out there reading the blog, if you’re coming to this lab from a totally different background and not entirely sure about the future, don’t be afraid. And I hope you find what you come here looking for, just like I did.
 
Finally, I want to thank the people who’s helped me along the way and who’s made the lab such an enjoyable place: Hershel, Henry, Rashmi, John and Trevor; and last but not least, Dr. Tyrrell, without whose kindly offer and guidance I would never have had such an amazing experience. Here’s to an unforgettable summer and a strong start of the new school year. Cheers!
 
Wenda Zhao

From YSP to Hanging Out at Stanford: Michelle Cheung

Hello! My name is Michelle Cheung and I am a rising 2nd year student at the University of Toronto. I was one of the Youth Summer Program (YSP) students in Dr. Pascal Tyrrell’s lab in the summer of 2016. During the program, I helped with the Medical Imaging Network Enterprise Project by surveying patients at Sunnybrooks hospital for their perspectives on sharing medical images for research.
Before entering Pascal’s lab in 2016, I took part in YSP the summer before in 2015. It was my two years in the summer program that made me aware of U of T. Being able to live in the dorms, attend classes and labs, and explore the city made me fall in love with the campus, especially the fast-paced metropolitan city life in contrast to the suburban life back home in California. More importantly, through the program, I was exposed to the lab environment. Of course, it was more than the allure of lab coats and micropipettes, but my time in the labs sparked my interest in research, hence am now pursuing genomics and hoping to learn more about hereditary diseases. Thus, when it came down to deciding which college to attend, all these factors placed U of T high up on the list.
Near the beginning of second semester of my first year, I started thinking about what to do over the summer. I couldn’t waste the 4 months and knew I needed the exposure and experience in professional labs if I plan on becoming a genetics researcher, hence started looking for research internships.
I was offered an internship position at the biopharmaceutical company, AbbVie, back in California, and it was quite an interesting experience applying for the position. I thought the first phone interview went decent but I was aware that I didn’t express enough interest in a particular aspect of research associated with the position. A month later, I interviewed a second time. It went really well until the interviewer said, “Let me ask you a challenging question.” I was expecting a deep theoretical question, and it ended up being, “Introduce yourself and your career goals in Cantonese.” In all fairness, my auditory skills are on point and I can understand conversational Cantonese, however, truthfully, my speaking skills had grown too rusty after not speaking it at home anymore. Hence, in my response, I managed to fluently get out my name, age, and school. I tried talking about my hobbies; trying to say “hiking with friends” turned out in me saying “taking walks with friends”, and “baking” turned out to me saying “cooking”. I was stumped when trying to describe my career goals as I blanked on how to say genetics and research and complicated bio words. Least to say, the awkward silence as I tried to come up with the right thing to say was mortifying. Little did I know that the interviewer would become my current manager (great guy), but hey, he hasn’t brought up the mortifying experience and I now have an embarrassing interview story to tell and a lesson learned.
Meanwhile, my parents connected with a family friend who was a scientist at Stanford. She was looking for a student research trainee to help her with her research project studying pulmonary disease, working with mice, and it was a fitting role for me.
I found out I was accepted to the research internship at AbbVie and luckily, the timing works out with my shadowing at Stanford. One internship would give me more practical lab experience while the other would give me a taste of the bio corporate industry. Hence, it’s the best of both worlds this summer – getting to experience both academic and industry research.
All in all, I am here today, about 1.5 months into the research internships, and having a blast. I had a wonderful first year of undergrad, and as I reflect, am very grateful for my time in YSP for bringing me to U of T and exposing me to the medical research world.     
 
-Michelle Cheung

My Past and Future at U of T: Helena Lan’s Perspective

 



Hey everyone, it’s been a while since I posted here. In case you don’t remember me – my name is Helena Lan, and I started in Professor Pascal Tyrrell’s group as a ROP299 student. Fast forward to the present, I have finished my specialist program in pharmacology, and will be graduating with an Honours Bachelor of Science degree later this month! But if you think that I am finally leaving U of T – nope, my journey is not over yet. This August, I will be living my dream of many years as I start my MD training at U of T! As I prepare to begin the next chapter of my life, I wanted to share with you how my involvement in Prof. Tyrrell’s group paved the way for me achieving my goal today.

At the end of my first year of undergrad, I connected with Prof. Tyrrell and took on a project investigating how the choice of non-invasive imaging modality for diagnosing carotid stenosis impacts patient care (check out my experience here https://www.tyrrell4innovation.ca/2014/08/helena-lan-summer-2014-rop.html).
Afterwards, I continued on as a research assistant, where I ­explored the need for statistics and research methodology training in the medical imaging department.  My early research endeavours showed me that research was not just pipetting; there is a diversity of research that can drive innovations and improve patient care. 
That being said, I also wanted to experience working in a wet lab setting. So upon completing my second year of undergrad, I ventured to the Karolinska Institute in Sweden to investigate the tumour killing mechanism of Natural Killer cells (find out more about my project here https://www.tyrrell4innovation.ca/2015/02/who-is-going-to-karolinska-institute.html). After a summer in basic science research, I decided to switch gears into translational research, where I worked on strategies to augment the therapeutic utility of stem cells and enhance the drug delivery platforms at Prof. Jeff Karp’s lab at Brigham and Women’s Hospital, Harvard Medical School. After I returned from Boston, my passion for discovering ways to improve existing treatments for diseases led me to my current work at Dr. Albert Wong’s lab at CAMH, where I am assisting with the characterization of a novel animal model for schizophrenia with the ultimate goal of using it as a screening platform for new anti-psychotics.
In my experiences as a researcher, I’ve always been very excited at the prospect that what I am working on right now may be brought into the clinic sometime down the road and offer benefits to patients. Then one day, I thought to myself, “How rewarding would it be if I can get involved in patient care, where I can directly impact the life of the person sitting in front of me?” With this idea planted in my mind, I decided to shadow a physician. As I observed how a doctor applies their scientific knowledge and the findings from medical research to figure out ways to best help their patients, my attraction to medicine gradually evolved. For a long time, my goal in life has been to make a positive impact on other people’s lives. But after that shadowing experience, I realized that I wanted to do so through taking on the role of a clinician.
I am incredibly grateful to the U of T medical school for giving me the opportunity to pursue my dream, as well as the pharmacology department and New College for their recognition of my undergrad academic achievements with the Dr. Walter Roschlau Memorial award and the Tricia L. Carroll Memorial Prize in the Life Sciences. But more importantly, thank you to U of T for the unforgettable undergrad experience. Not only was I able to immerse myself in fascinating science and interesting research, I was also connected with mentors who provided unconditional support to me along my journey. Even though the ROP project I worked on under the supervision of Prof. Pascal Tyrrell and Dr. Eli Lechtman ended years ago, the two of them have provided invaluable mentoring to me even to this day.
University can seem arduous at times, and it is almost inevitable that we run into obstacles here and there. But no matter how difficult the circumstances may be, never, ever, lose sight of your goal. Surround yourself with people who cheer you on, and invest the work that is necessary to reach your ambition. And one day, your dream will come true!  
All the best,
Helena Lan

Lee Radigan: A Reflection on my (6th) Year as an Undergrad at the University of Toronto

My name is Lee Radigan and I am a non-degree student pursuing admittance to the Biostatistics Masters program at the Dalla Lana School of Public Health.  After returning for my 6th year studying statistics at The University of Toronto, I thought that this was a perfect time to reflect on my progress.
Since September, I have been working under Dr. Pascal Tyrrells guidance on a project aimed at helping the Department of Medical Imaging report agreement in their research.  To do this, I created a flow chart to help guide the reader towards the proper method of agreement.  Along with this, I conducted a simulation looking at a specific question pertaining to the Department.
Initially, I was tasked with combing through various papers on the theory of agreement and making sense of all the different published work that was out there.  There are many different approaches and different ways of looking at reporting agreement, so it was quite difficult to figure out when and where to properly use every single approach.  After reading and re-reading each paper, as well as consulting the MiData team, I started to develop a thorough understanding of what agreement was, why it is important to report it, and how to go about reporting it appropriately.
Next, a flow chart was required to summarize what I had learned from the literature.  This was not an easy task, because it forced me to dig really deep and make sure that every node in my flow chart was well thought out and appropriate.  After many iterations and adjustments, I created a detailed chart that walks the reader from their initial research question up to the required agreement statistic.
My final task was to conduct a simulation that would test the question: Can a group of less experienced student raters be as accurate as a smaller set of more experience expert raters?  And if so, how many students?  And under what conditions?  This was a very fun and informative task for me as I was able to conduct my first simulation.  During this experience, my biggest difficulty was justifying my choices of parameters within the simulation.  When conducting a simulation you have freedom to choose how it is going to work, but you must be careful to be able to back up each and every parameter choice.  The simulation ended up showing that: the larger the disparity between the rating errors of the student and expert raters, the more students it takes to match the accuracy of the experts, confirming my intuition.
There are many things that I wish to expand on with respect to my project in future.  I want to create a user friendly app that will be even easier and more compact than my flow chart.  Additionally, I want to try to get my paper published.  To do this I will need to look further into my simulation and consider a more broad range of student/expert scenarios that likely will occur in practice.  I will also need to further refine my definitions and understanding of each concept of agreement.
This year has truly been the best of my life and I can largely attribute that to Dr. Pascal and the MiData team.  I look forward to contributing to Medical Imaging research and to many more learning experiences.
Time to enjoy the summer as I embark on yet another exciting experience as a student Statistical Analyst at the CAMH Nicotine Dependence Clinic as a summer placement!
Lee Radigan

ROP299 2017-2018: A Medical Imaging Journey from a Humanities Perspective

My name is Samantha Santoro, and I am completing my second year in the English and Biology majors at the University of Toronto, St. George. A rather unconventional combination, when reviewing past students of Dr. Tyrrell’s lab. I was a 2017-2018 Research Opportunity Program (ROP) student in Dr. Pascal Tyrrell’s lab, and my work chiefly consisted of evaluating the internal vessel wall volumes of carotid arteries in a particular cohort of patients provided by the ongoing prospective CAIN study. My ROP was in the field of Medical Imaging. I am the co-president of the student club known as Watsi, with the main chapter based in San Francisco. I am also a special contributor to the Rare Disease Review, along with volunteering at an amalgamation of charity walks and fundraisers.

My ROP project was a turbulent experience – although that word is typically associated with a negative connotation, I regard my ROP299Y1 as one of the most humbling, interesting, and educative experiences that I have had thus far – most definitely not negative. However, to say everything went smoothly would be discrediting the lessons I learned from when things were not idyllic and smooth. My project, as aforementioned, statistically analyzed data provided by patients part of the CAIN study (an analysis that could not have existed without Dr. Tyrrell’s generous and unwavering support). My study determined that patients who were found to have IPH, or what is known as intraplaque hemorrhage, when I analyzed their MRIs, were also found to have increased vessel wall volume. This conclusion is incredibly significant, as IPH is a surrogate marker for atherosclerosis and could potentially be an indicator for patients at risk of future cerebrovascular events (namely, ischemic stroke). As strokes are currently the number three killer in the U.S and Canada alone, and heart disease number one, having a potential indicator for patients at risk of stroke would greatly benefit clinicians in their practice, as well as patients themselves.

As aforementioned, studies similar to my own are currently underway by the Canadian Atherosclerosis Imaging Network, furthering the important research in this field. The VBIRG (Vascular Biology Imaging Research Group) was the lab in which I primarily worked throughout the course of my ROP, at Sunnybrook Hospital. Moreover, I also worked on systematic reviews and reports outside of the focus of my project, in the fields of medical ethics and AI in the radiology workplace – both of which were opportunities provided to me by Dr. Tyrrell, and both of which were incredibly valuable experiences, allowing for me to broaden my knowledge of certain areas of medicine and science that are developing and expanding.

Although my project was littered with its own respective difficulties – a substantial number of drafts throughout each step of the program (more than I had ever made, even being an English student); a reluctant, but later fulfilling, acquaintanceship with the post-processing software VesselMass; and several late nights learning about the field of statistics – it is in light of these difficulties, and at present having overcome them throughout my ROP, that I remember Dr. Paul Kalanithi’s words in his memoir When Breath Becomes Air: “It occurred to me that my relationship with statistics changed as soon as I became one”. He, too, had studied Biology and English. I may not have played a lead role in the statistics I had been working with, but I can now say that understanding what they meant and how they were formulated has generated a deep respect in me for the field of statistics.

My poster was on display at the 2018 Research Opportunity Undergraduate Fair. Special thanks to Mariam Afshin, my supervisor at Sunnybrook Hospital; Bowen Zhang, for answering each question I had while at Sunnybrook; John, and the rest of the lab team; and Dr. Pascal Tyrrell, for answering my email last February and holding my interview on the same day as my Chemistry exam. Never before had I met such an – in a word – outstanding professor, and I dare say that I will never meet one like him throughout the rest of my academic journey.

Samantha Santoro

Lessons Along the Way

https://betakit.com/startupcfo-explains-the-long-windy-road-to-a-closed-funding-round/
 
 
With summer almost here, it’s a good time to reflect on lessons learned from the academic year gone by. Since September, I’ve been working under Dr. Pascal Tyrrell’s supervision on a systematic review (SR) project investigating sample size determination methods (SSDMs) in machine learning (ML) applied to medical imaging. Shout out to the Department of Statistical Sciences where I completed my independent studies course! Here, I share important lessons I learned in the hopes that they may resonate with you.
 
Despite being a stats student (as you know from my previous posts!), I was initially new to ML and confronted with the task of critically reviewing theoretically-dense primary articles. I came to appreciate the first step was to develop a solid background – starting from high-level YouTube videos and lessons on DataCamp, to reading ML blogs and
review articles – all until I was confident enough to evaluate articles on my own. For me, the key to learning a complex subject was to build on foundational concepts and keep things as clear as possible. As Einstein once said: “If you can’t explain it simply, you don’t understand it well enough”.
 
Next, it was time to conduct a systematic search. The University of Toronto library staff were especially helpful at guiding me in use of OVID Medline and Embase, databases with methodical search procedures and a careful search syntax relying on various operators. To be thorough, we also sent a request out to the rest of our research team, who hand-searched through their own stash of literature. Along the way, we garnered support from the university, successfully receiving the Undergraduate Research
Fund grant. The lessons for me here? The importance of seeking expert help where appropriate, and that being resourceful can pay off (literally)! Finally, I valued our strong team culture, without which none of this would have been possible.
 
While working on the SR, I also conducted a subsampling experiment using a medical imaging dataset, testing the effect of class imbalance on a classifier’s performance. Hands-on/practical experiences are critical in developing a more nuanced understanding of subject material – in my case, an understanding that translated to my SR.
 
So now you are probably wondering about the results! The subsampling experiment helped us develop a model for the deleterious effect of class imbalance on classification accuracy and demonstrated that this effect was sensitive to total sample size. Meanwhile in our SR, we observed great variability in SSDMs and model assessment measures, calling for the need to standardize reporting practices.
 
That was a whirlwind recap of the year and I hope some of the lessons I learned resonate with you!
 
See you in the
blogosphere,
 
Indranil Balki
 
A special thanks to Dr. Pascal Tyrrell, as well as Dr.
Afsaneh Amirabadi & Team

A Medical Ethics ROP Journey with Jayun Bae

Jayun Bae – ROP299Y 2016-17
My name is Jayun Bae and I am completing my second year in the Neuroscience and Bioethics majors at the University of Toronto, St. George. I was a 2016-2017 Research Opportunity Program (ROP) student in Dr. Pascal Tyrrell’s lab, working on a study that investigated the ethics of sharing patient data with private organizations (see my timeline above). I am a member of the Hart House Debating Club and an events associate for the Life Science Student Network. 
                                                               
My ROP project was necessitated by the partnership proposed by the Medical image Networking Enterprise (MiNE) that would establish a data-sharing relationship between public and private sector organizations. The ethical concerns with the partnership involved patient consent, privacy, and financial gain – but there were also issues that I
uncovered throughout the project. It quickly became clear that the answers could not be found through an examination of precedence or legal documents, because many of the research actions that would take place (specifically involving private organizations) fell in the grey area between what was legal and what was ethical. For example, the Personal Information Protection and Electronic Documents Act (PIPEDA) and Personal Health Information Protection Act (PHIPA) are two guidelines for organizations to follow when handling patient data – but neither are able to clearly and positively dictate how this partnership should operate.
Therefore, I developed a study that would seek expert opinions through the administration of a survey. I conducted interviews at Sunnybrook Health Sciences Centre and the University of Toronto and performed qualitative data analysis. My ROP project was presented at the ROP Poster Fair and the Victoria College Research Day events. The ROP was an extremely valuable experience in gaining research skills, and I’m grateful to
Dr. Tyrrell for the guidance and mentorship. The project is not yet completed, so I am looking forward to continuing the study beyond the scope of the ROP.   
Please have a look at my poster from the 2017 ROP Research Day below:

MRI, Statistics, Carotid Arteries, and 1000 Cups of Coffee with George Wang

GeorgeWang – ROP299Y 2016-17
I’m George. I have recently completed my 2nd year undergrad at the University of Toronto studying physiology and physics. In the fall-winter term of 2016-17 I had the privilege to work in Pascal’s group, looking into carotid artery MRI and using the volume of the carotid artery vessel wall as a marker for atherosclerosis. Having an acquired interest in medical imaging and a previous summer position working with PET, I saw this as an excellent opportunity to expand my knowledge of the field while having the chance to be exposed to clinical research methods. Above is my account of how the year went in a nutshell.
 
Have a look at my poster from the ROP Research Day below…