https://thevarsity.ca/2019/03/10/what-does-a-scientist-look-like/ |
My name is Rachael Jaffe and I am completing my third year in Global Health, Economics and Statistics. I had no clue what I was getting myself into this year during my ROP (399) with Dr. Tyrrell. I initially applied because the project description had to do with statistics,
and I was inclined to put my minor to the test! Little did I know that I was about to embark on a machine learning adventure.
and I was inclined to put my minor to the test! Little did I know that I was about to embark on a machine learning adventure.
My adventure started with the initial interview: after a quite a disheartening tale of Dr. Tyrrell telling me that my grades weren’t high enough and me trying to convince him that I would be a good addition to the lab because “I am funny”, I was almost 100% certain that I
wasn’t going to be a part of the lab for 2018-2019 year. If my background in statistics has taught me anything, nothing truly has a 100% probability. And yet, last April I found myself sitting in the department of medical imaging at my first lab meeting.
wasn’t going to be a part of the lab for 2018-2019 year. If my background in statistics has taught me anything, nothing truly has a 100% probability. And yet, last April I found myself sitting in the department of medical imaging at my first lab meeting.
Fast forward to September of 2018. I was knee deep (well, more accurately, drowning) in machine learning jargon; from learning about the basics of a CNN to segmentation to what a GPU is. From there, I chose a project. Initially, I was just going to explore the relationship between sample size and model accuracy, but then it expanded to include an investigation in k-fold cross validation.
I started my project with the help of Ariana, a student from a lab in Costa Rica. She built a CNN that classifies dentistry PSP’s for damage. I modified it to include a part that allowed the total sample size to be reduced. The relationship between sample size and model accuracy is very well known in the machine learning world, so Dr. Tyrrell decided that I
should add an investigation of k-fold cross validation because the majority of models use this to validate their estimate of model accuracy. With further help from Ariana’s colleague, Mauro, I was able to gather a ton of data so that I could analyze my results statistically.
should add an investigation of k-fold cross validation because the majority of models use this to validate their estimate of model accuracy. With further help from Ariana’s colleague, Mauro, I was able to gather a ton of data so that I could analyze my results statistically.
It was more of a “academic” project as Dr. Tyrrell noted. However, that came with its own trials and tribulations. I was totally unprepared for the amount of statistical interpretation that was required, and it took a little bit of time to wrap my head around the intersection of statistics and machine learning. I am grateful for my statistics minor during this ROP because without it I would’ve definitely been lost. I came in with a knowledge of python so writing and modifying code wasn’t the hardest part.
I learned a lot about the scientific process during my ROP. First, it is incredibly important to pick a project with a clear purpose and objectives. This will help with designing your project and what analyses are needed. Also, writing the report is most definitely a process. The first draft is going to be the worst, but hang on because it will get better from there. Lastly, I learned to learn from my experience. The most important thing as a budding scientist is to learn from your mistakes so that your next opportunity will be that much better.
I’d like to thank Dr. Tyrrell for giving me this experience and explaining all the stats to me. Also, Ariana and Mauro were invaluable during this experience and I wish them both the best in their future endeavors!
Rachael Jaffe