

Part 5 Lecture 1 More on Modeling

Correlation

Pearson Correlation Coefficient

Hypothesis Test for a Correlation

The parameter representing correlation is ρ . $\Box \rho$ is estimated by the sample statistic *r*.

H₀: ρ=0
 Rejecting H₀ indicates only great confidence that ρ is not exactly zero.

 $\Box A p$ -value does not measure the magnitude of the association but is affected by sample size.

Correlation versus Causation

Missing Another Type of Relationship

Extreme Data Values

The CORR Procedure

• General form of the CORR procedure:

PROC CORR DATA=SAS-data-set <options>;
 VAR variables;
 WITH variables;
 ID variables;
RUN;

Simple Linear Regression Analysis

- □The objectives of simple linear regression are as follows:
 - □assess the significance of the predictor variable in explaining the variability or behavior of the response variable
 - □predict the values of the response variable given the values of the predictor variable

Fitness Example

Simple Linear Regression Model

Simple Linear Regression Model

The Baseline Model

Explained versus Unexplained Variability

Partitioning Variability in Regression

Coefficient of Determination

 $R^2 = SS_{reg} / SS_T$

"Proportion of variance accounted for by the model"

Correlation coefficient

In this special case of simple regression:

$$r = \sqrt{R^2}$$

Pearson Correlation Coefficient

•Of historical note:

$$r = \frac{cov(X,Y)}{\sqrt{var(X)x var(Y)}}$$

*Covariance of X and Y is the product of the deviation of X and Y from their respective means

Assumptions of Simple Linear Regression

Next up in Part 5 Lecture 2: Reliability

