

### Part 4 Lecture 1 Categorical Data







### Pascal Tyrrell, PhD

Associate Professor

Department of Medical Imaging, Faculty of Medicine

Institute of Medical Science, Faculty of Medicine

Department of Statistical Sciences, Faculty of Arts and Science







## **Examining Categorical Variables**

By examining the distributions of categorical variables, you can do the following:

>determine the frequencies of data values.

>recognize possible associations among variables





## **Categorical Variables Association**

>An association exists between two categorical variables if the distribution of one variable changes when the level (or value) of the other variable changes.

>If there is no association, the distribution of the first variable is the same regardless of the level of the other variable.





### No Association



Is your manager's mood associated with the weather?





### Association



Is your manager's mood associated with the weather?





## **Frequency Tables**

 A frequency table shows the number of observations that occur in certain categories or intervals. A one-way frequency table examines one variable.

| Income | Frequency | Percent | Cumulative<br>Frequency | Cumulative<br>Percent |
|--------|-----------|---------|-------------------------|-----------------------|
| High   | 155       | 36      | 155                     | 36                    |
| Low    | 132       | 31      | 287                     | 67                    |
| Medium | 144       | 33      | 431                     | 100                   |



### **Cross Tabulation Tables**

 A crosstabulation table shows the number of observations for each combination of the row and column variables.

|       | column 1           | column 2           | <br>column c           |
|-------|--------------------|--------------------|------------------------|
| row 1 | cell <sub>11</sub> | cell <sub>12</sub> | <br>cell <sub>1c</sub> |
| row 2 | cell <sub>21</sub> | cell <sub>22</sub> | <br>cell <sub>2c</sub> |
|       |                    |                    | <br>                   |
| row r | cell <sub>r1</sub> | cell <sub>r2</sub> | <br>cell <sub>rc</sub> |

![](_page_7_Picture_3.jpeg)

## The FREQ Procedure

General form of the FREQ procedure:

PROC FREQ DATA=SAS-data-set; TABLES table-requests </ options>; RUN;

![](_page_8_Picture_3.jpeg)

![](_page_8_Picture_4.jpeg)

## **Titanic Example**

 On the 10<sup>th</sup> of April, 1912, the RMS Titanic set out on its maiden voyage across the Atlantic Ocean carrying 2,223 passengers. On the 14<sup>th</sup> of April, it hit an iceberg and sank. There were 1,517 fatalities. Identifying information was not available for all passengers.

![](_page_9_Picture_2.jpeg)

# Question

 Which of the following would likely not be considered categorical in the data?

- a. Gender
- b. Fare
- c. Survival
- d. Age
- e. Class

![](_page_10_Picture_7.jpeg)

![](_page_10_Picture_8.jpeg)

### **Correct Answer**

Which of the following would likely not be considered categorical in the data?

![](_page_11_Picture_2.jpeg)

![](_page_11_Picture_3.jpeg)

![](_page_11_Picture_4.jpeg)

## Objectives

>Perform a chi-square test for association

>Examine the strength of the association

Calculate exact *p*-values

![](_page_12_Picture_4.jpeg)

![](_page_12_Picture_5.jpeg)

### Overview

| Type of<br>Predictors<br>Type of<br>Response | Categorical                                                              | Continuous                                    | Continuous and<br>Categorical         |
|----------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------|
| Continuous                                   | Analysis of<br>Variance<br>(ANOVA)                                       | Ordinary Least<br>Squares (OLS)<br>Regression | Analysis of<br>Covariance<br>(ANCOVA) |
| Categorical                                  | <b>Contingency</b><br><b>Table Analysis</b><br>or Logistic<br>Regression | Logistic<br>Regression                        | Logistic<br>Regression                |

![](_page_13_Picture_2.jpeg)

![](_page_13_Picture_3.jpeg)

### Introduction

| Table of Gender by Survival |                    |        |        |  |  |  |
|-----------------------------|--------------------|--------|--------|--|--|--|
| Gender                      | Survival           |        |        |  |  |  |
| Row Pct                     | Died Survived Tota |        |        |  |  |  |
| female                      | 27.75%             | 72.25% | N=466  |  |  |  |
| male                        | 80.90%             | 19.10% | N=843  |  |  |  |
| Total                       | N=809              | N=500  | N=1309 |  |  |  |

![](_page_14_Picture_2.jpeg)

![](_page_14_Picture_3.jpeg)

## Null Hypothesis

There is no association between Gender and Survival.
 The probability of surviving the Titanic crash was the same whether you were male or female.

#### >Alternative Hypothesis

There *is* an association between Gender and Survival.
 The probability of surviving the Titanic crash was not the same for males and females.

![](_page_15_Picture_4.jpeg)

![](_page_15_Picture_5.jpeg)

### **Chi-Square Test**

### **NO ASSOCIATION**

observed frequencies=expected frequencies

#### ASSOCIATION

observed frequencies≠expected frequencies

The expected frequencies are calculated by the formula: (row total\*column total) / sample size.

![](_page_16_Picture_6.jpeg)

![](_page_16_Picture_7.jpeg)

### **Chi-Square Tests**

Chi-square tests and the corresponding p-values
 determine whether an association exists
 do not measure the strength of an association
 depend on and reflect the sample size.

 $=\sum_{i=1}^{R}\sum_{j=1}^{C}\frac{(Obs_{ij}-Exp_{ij})^{2}}{(Obs_{ij}-Exp_{ij})^{2}}$ i=1 j=1

![](_page_17_Picture_3.jpeg)

![](_page_17_Picture_4.jpeg)

### **Measures of Association**

![](_page_18_Figure_1.jpeg)

Cramer's V is always non negative for tables larger than 2\*2. Use Phi for 2\*2 tables.

![](_page_18_Picture_3.jpeg)

![](_page_18_Picture_4.jpeg)

## **Odds Ratios**

>An odds ratio indicates how much more likely, with respect to odds, a certain event occurs in one group relative to its occurrence in another group.

Example: How do the odds of males surviving compare to those of females?

$$Odds = \frac{p_{event}}{1 - p_{event}}$$

![](_page_19_Picture_4.jpeg)

![](_page_19_Picture_5.jpeg)

### Probability versus Odds of an Outcome

|                                   | Outo                    |       |       |
|-----------------------------------|-------------------------|-------|-------|
|                                   | Yes                     | Νο    | Total |
| Group A                           | 60                      | 20    | 80    |
| Group B                           | 90                      | 10    | 100   |
| Total                             | 150                     | 30    | 180   |
| Total <b>Yes</b> outo<br>in Group | Total outcom<br>Group B | es in |       |

Probability of a Yes in Group B=90÷100=0.9

![](_page_20_Picture_3.jpeg)

![](_page_20_Picture_4.jpeg)

### Probability versus Odds of an Outcome

|                             | Outo          |                              |                     |
|-----------------------------|---------------|------------------------------|---------------------|
|                             | Yes           | Νο                           | Total               |
| Group A                     | 60            | 20                           | 80                  |
| Group B                     | 90            | 10                           | 100                 |
| Total                       | 150           | 30                           | 180                 |
| Probability of<br>Group B=0 | <b>Yes</b> in | Probability of<br>Group B=0. | <b>No</b> in<br>.10 |

Odds of Yes in Group B=0.90+0.10=9

![](_page_21_Picture_3.jpeg)

![](_page_21_Picture_4.jpeg)

## **Odds Ratio**

|                                                           | Outo |    |       |  |  |  |
|-----------------------------------------------------------|------|----|-------|--|--|--|
|                                                           | Yes  | Νο | Total |  |  |  |
| Group A                                                   | 60   | 20 | 80    |  |  |  |
| Group B                                                   | 90   | 10 | 100   |  |  |  |
| Total                                                     | 150  | 30 | 180   |  |  |  |
| Odds of Yes in<br>Group A=3 • Odds of Yes in<br>Group B=9 |      |    |       |  |  |  |
| Odds Ratio, <u>A to B</u> =3÷9=0.3333                     |      |    |       |  |  |  |

![](_page_22_Picture_2.jpeg)

![](_page_22_Picture_3.jpeg)

### Properties of the Odds Ratio, A to B

![](_page_23_Figure_1.jpeg)

![](_page_23_Picture_2.jpeg)

![](_page_23_Picture_3.jpeg)

# Multiple Answer Poll

•What tends to happen when sample size decreases?

a.The chi-square value increases.

b.The *p*-value increases.

c.Cramer's V increases.

d. The Odds Ratio increases.

e. The width of the CI for the Odds Ratio increases.

![](_page_24_Picture_7.jpeg)

![](_page_24_Picture_8.jpeg)

### Multiple Answer Poll – Correct Answers

•What tends to happen when sample size decreases?

a. The chi-square value increases.
b. The *p*-value increases.
c. Cramer's V increases.
d. The Odds Ratio increases.
e. The width of the CI for the Odds Ratio increases.

![](_page_25_Picture_3.jpeg)

## When Not to Use the Asymptotic $\chi^2$

![](_page_26_Picture_1.jpeg)

When more than 20% of cells have expected counts less than five

![](_page_26_Picture_3.jpeg)

![](_page_26_Picture_4.jpeg)

### **Observed versus Expected Values**

| Table of Row by Column |           |                    |                    |             |       |  |
|------------------------|-----------|--------------------|--------------------|-------------|-------|--|
| Row                    | ow Column |                    |                    |             |       |  |
| Frequency<br>Expected  |           | 1                  | 2                  | 3           | Total |  |
|                        | 1         | 1<br><b>3.4286</b> | 5<br><b>4.5714</b> | 8<br>6      | 14    |  |
|                        | 2         | 5<br><b>4.4082</b> | 6<br>5.8776        | 7<br>7.7143 | 18    |  |
|                        | 3         | 6<br><b>4.1633</b> | 5<br>5.551         | 6<br>7.2857 | 17    |  |
| Total                  |           | 12                 | 16                 | 21          | 49    |  |

![](_page_27_Picture_2.jpeg)

### Small Samples – Exact *p*-Values

![](_page_28_Figure_1.jpeg)

![](_page_28_Picture_2.jpeg)

![](_page_28_Picture_3.jpeg)

#### **Exact** *p***-Values for Pearson Chi-Square**

![](_page_29_Figure_1.jpeg)

A *p*-value gives the probability of the value of the  $\chi^2$  value being as extreme or more extreme than the one observed, just by chance.

Could the <u>underlined</u> sample values occur just by chance?

![](_page_29_Picture_4.jpeg)

![](_page_29_Picture_5.jpeg)

#### **Exact** *p***-Values for Pearson Chi-Square**

![](_page_30_Figure_1.jpeg)

![](_page_30_Picture_2.jpeg)

![](_page_30_Picture_3.jpeg)

#### **Exact** *p***-Values for Pearson Chi-Square**

![](_page_31_Figure_1.jpeg)

The exact *p*-value is the sum of probabilities of all tables with  $\chi^2$  values as great or greater than that of the Observed Table:

*p*-value=0.286+0.143=0.429

![](_page_31_Picture_4.jpeg)

![](_page_31_Picture_5.jpeg)

![](_page_32_Picture_0.jpeg)

#### Next up in Part 4 Lecture 2: Logistic Regression

![](_page_32_Picture_2.jpeg)

![](_page_32_Picture_3.jpeg)