

Part 4
 Lecture 1 Categorical Data

Who I am...

Pascal Tyrrell, PhD

Associate Professor
Department of Medical Imaging, Faculty of Medicine Institute of Medical Science, Faculty of Medicine
Department of Statistical Sciences, Faculty of Arts and Science

Examining Categorical Variables

By examining the distributions of categorical variables, you can do the following:
>determine the frequencies of data values.
>recognize possible associations among variables

Categorical Variables Association

$>$ An association exists between two categorical variables if the distribution of one variable changes when the level (or value) of the other variable changes.
$>$ If there is no association, the distribution of the first variable is the same regardless of the level of the other variable.

No Association

Is your manager's mood associated with the weather?

Association

Is your manager's mood associated with the weather?

Frequency Tables

- A frequency table shows the number of observations that occur in certain categories or intervals. A one-way frequency table examines one variable.

Income	Frequency	Percent	Cumulative Frequency	Cumulative Percent
High	155	36	155	36
Low	132	31	287	67
Medium	144	33	431	100

Cross Tabulation Tables

- A crosstabulation table shows the number of observations for each combination of the row and column variables.

row 1	umn 1 column 2		\ldots	column c
	cell 11	cell 12	\ldots	$\mathrm{cell}_{1 \mathrm{c}}$
row 2	cell 21	cell 22	\ldots	$\mathrm{cell}_{2 \mathrm{c}}$
\ldots	\ldots	\ldots	\ldots	\ldots
row r	cell ${ }_{\text {1 }}$	cellr2	\ldots	cell ${ }_{\text {rc }}$

The FREQ Procedure

- General form of the FREQ procedure:

> PROC FREQ DATA=SAS-data-set; TABLES table-requests </ options>; RUN;

Titanic Example

- On the $10^{\text {th }}$ of April, 1912, the RMS Titanic set out on its maiden voyage across the Atlantic Ocean carrying 2,223 passengers. On the $14^{\text {th }}$ of April, it hit an iceberg and sank. There were 1,517 fatalities. Identifying information was not available for all passengers.

Question

- Which of the following would likely not be considered categorical in the data?
a. Gender
b. Fare
c. Survival
d. Age
e. Class

Correct Answer

- Which of the following would likely not be considered categorical in the data?
a. Gender
b. Fare
c. Survival
d. Age
e. Class

Objectives

>Perform a chi-square test for association
>Examine the strength of the association
Calculate exact p-values

Overview

Type of Type of Response	Categorical	Continuous	Continuous and Categorical
Continuous	Analysis of Variance (ANOVA)	Ordinary Least Squares (OLS) Regression	Analysis of Covariance (ANCOVA)
Categorical	Contingency Table Analysis or Logistic Regression	Logistic Regression	Logistic Regression

Introduction

Table of Gender by Survival			
Gender	Survival		
Row Pct	Died	Survived	Total
female	27.75%	72.25%	$\mathrm{~N}=466$
male	80.90%	19.10%	$\mathrm{~N}=843$
Total	$\mathrm{N}=809$	$\mathrm{~N}=500$	$\mathrm{~N}=1309$

Null Hypothesis

$>$ There is no association between Gender and Survival.
$>$ The probability of surviving the Titanic crash was the same whether you were male or female.

>Alternative Hypothesis

$>$ There is an association between Gender and Survival.
$>$ The probability of surviving the Titanic crash was not the same for males and females.

Chi-Square Test

NO ASSOCIATION

observed frequencies=expected frequencies

ASSOCIATION

observed frequencies \neq expected frequencies

The expected frequencies are calculated by the formula: (row total*column total) / sample size.

Chi-Square Tests

Chi-square tests and the corresponding p-values
>determine whether an association exists
$>$ do not measure the strength of an association
>depend on and reflect the sample size.

$$
\chi^{2}=\sum_{i=1}^{R} \sum_{j=1}^{C} \frac{\left(O b s_{i j}-\operatorname{Exp}_{i j}\right)^{2}}{\operatorname{Exp}_{i j}}
$$

Measures of Association

Cramer's V is always non negative for tables larger than 2*2. Use Phi for 2*2 tables.

Odds Ratios

>An odds ratio indicates how much more likely, with respect to odds, a certain event occurs in one group relative to its occurrence in another group.
>Example: How do the odds of males surviving compare to those of females?

$$
\text { Odds }=\frac{p_{\text {event }}}{1-p_{\text {event }}}
$$

Probability versus Odds of an Outcome

	Outcome			
	Yes	No		
Total				
Group A	60	20		
80				
Group B	90	10		
Total	150	30		180
:---:				

Probability of a Yes in Group B=90 $\div 100=0.9$

Probability versus Odds of an Outcome

	Outcome	
	Yes	No
Total		
Group A	60	20
80		
Group B	90	10
Total	150	30

Probability of Yes in Group B $=0.90$
\bullet
Group B $=0.10$

$$
\text { Odds of Yes in Group } B=0.90 \div 0.10=9
$$

Odds Ratio

Odds Ratio, A to $B=3 \div 9=0.3333$

Properties of the Odds Ratio, A to B

Multiple Answer Poll

-What tends to happen when sample size decreases?
a.The chi-square value increases.
b. The p-value increases.
c.Cramer's V increases.
d.The Odds Ratio increases.
e. The width of the Cl for the Odds Ratio increases.

Multiple Answer Poll - Correct Answers

-What tends to happen when sample size decreases?
a.The chi-square value increases.
b. The p-value increases.
c.Cramer's V increases.
d.The Odds Ratio increases.
e. The width of the Cl for the Odds Ratio increases.

When Not to Use the Asymptotic χ^{2}

When more than 20% of cells have
expected counts less than five

Observed versus Expected Values

Table of Row by Column				
Row	Column			
Frequency Expected	1	2	3	Total
1	1	5	8	14
	3.4286	4.5714	6	
2	5	6	7	18
	4.4082	5.8776	7.7143	
3	6	5	6	17
	4.1633	5.551	7.2857	
Total	12	16	21	49

Small Samples - Exact p-Values

Sample Size

Exact p-values

Small

Exact p-Values for Pearson Chi-Square

Observed Table

Expected Table

.86	2.14	3
1.14	2.86	4
2	5	7

A p-value gives the probability of the value of the χ^{2} value being as extreme or more extreme than the one observed, just by chance.

Could the underlined sample values occur just by chance?

Exact \boldsymbol{p}-Values for Pearson Chi-Square

Exact p-Values for Pearson Chi-Square

Observed Table			Possible Table 2			Possible Table 3		
0	3	3	1	2	3	2	1	3
2	2	4	1	3	4	0	4	4
2	5	7	2	5	7	2	5	7
$\begin{aligned} & \chi^{2}=2.100 \\ & \text { prob }=0.286 \end{aligned}$			$\begin{aligned} & \chi^{2}=0.058 \\ & \text { prob }=0.571 \end{aligned}$			$\begin{aligned} & \chi^{2}=3.733 \\ & \text { prob }=0.143 \end{aligned}$		

The exact p-value is the sum of probabilities of all tables with χ^{2} values as great or greater than that of the Observed Table:

$$
p \text {-value }=0.286+0.143=0.429
$$

End of Lecture 1

Next up in Part 4 Lecture 2: Logistic Regression

