

Who I am...

Pascal Tyrrell, PhD

Associate Professor
Department of Medical Imaging, Faculty of Medicine Institute of Medical Science, Faculty of Medicine
Department of Statistical Sciences, Faculty of Arts and Science

BIAS AND CONFOUNDING

The factory workers of Art Smith are concerned about having severe Shortness of Breath (SOB). 100 employees exposed and a 100 not exposed were selected from the workforce. The following table summarizes the results for the SOB variable.

EXPOSURE AND PERCENTAGE OF SOB
DISEASE Total ㅇSB YES NO
YES $38 \quad 62 \quad 100$ 38\%

TOXIN
NO 1585100 15\% Fisher's p=0.0004
Odds Ratio $=3.48$ 95\% CI $1.76-6.87$
Relative Risk $=2.53$ 95\% CI 1.49-4.30

REVIEW OF RELATIVE RISK AND ODDS RATIO

```
                        EXPOSURE AND PERCENTAGE OF SOB
                DISEASE Total %SOB
            YES NO
YES 38 62 100 38%
TOXIN
RELATIVE RISK = P1/PO = 0.38 / 0.15 = 2.53
ODDS RATIO = (P1/Q1) / (PO/Q0)
    = (0.38/0.62) / (0.15/0.85)
    = 0.613 / 0.176 = 3.48
```

His friend John Smith was surprised because his workers are exposed to the same chemical and have reported no increase in SOB. He then remembered that most of his employees are women. This observation led Art to look at the results for his female employees.

EXPOSURE AND SOB PERCENT IN FEMALES

```
    DISEASE Total %SOB
        YES NO
YES 2 18 20 10.00%
\[
\text { NO } 7 \quad 7380 \quad 8.75 \% \quad \text { Fisher's p=1.0 }
\]
```

TOXIN

Odds Ratio $=1.16$ 95\% CI 0.22 - 6.06
Relative Risk= 1.14 95\% CI 0.26 - 5.01
MBAH

Art now assumed the excess risk must be among his male workers and was surprised that his males workers experienced no increased risk. $(\mathrm{p}=0.86)$.

EXPOSURE AND \% SOB DISEASE IN MALES

```
            DISEASE Total %SOB
    YES NO
YES 36 44 80 45
TOXIN
\begin{tabular}{ccccccc} 
NO 8 & 12 & 20 & \multicolumn{2}{c}{40} & Fisher's \(\mathrm{p}=0.86\) \\
Relative Risk=1.13 & \(95 \%\) & CI & 0.62 & -2.03 \\
Odds Ratio & \(=1.23\) & \(95 \%\) & CI & 0.45 & -3.33
\end{tabular}
```

	PERCENTAGE OF SOB				
		BY TOXIN EXPOSURE		AND SEX	
		FEMALES		MALES	OVERALL
YES	$2 / 20=$	10.00\%	$36 / 80=$	45.00\%	$38 / 100$
NO	$7 / 80=$	8.75\%	$8 / 20=$	40.00%	15/100
RR		1.14		1.13	2.53
Fish	er's P	P 1.00		0.86	0.0004

LANGUAGE OF CONFOUNDING

> Males are at a higher risk of disease
$>$ Higher proportion of males exposed to toxin
$>$ The increased risk of SOB in the group of exposed workers is not due to the toxin but because it has a greater percentage of males who have a higher percentage of SOB.

Perhaps males are given dirtier jobs or choose not to wear protective clothing. The SEX variable is called a CONFOUNDER.

Famous discussion between

Charles Darwin and his cousin Francis Galton
Charles Darwin
1809-1882

Darwin, concerned about the small sample size of his

experiment, wrote:

"As only a moderate number of crossed and self-fertilized were measured, it was of great importance to me to learn how far the averages were trustworthy. I therefore asked Mr.

Galton, who has much experience in statistical researches to examine some of my tables of measurement"

The typical survey in the social sciences in the $19^{\text {th }}$ century was very large. Darwin, a biologist, understood that a difference between two means of only 15 subjects selected from two different countries would unlikely result in any sound conclusions because of the wide variability among the observations.

However, Darwin believed the small sample size of his

 experiment was compensated by the care that he took in the design and execution of his study:"But the case is somewhat different with my crossed and selffertilized plants, as they were of exactly the same age, were subjected from the first to last to the same conditions and were descended from the same parents."

CREATING WIDE DATASET FOR PAIRED DATA

```
DATA INBRED ; INPUT INBRED @@ ;
GROUP = "INBRED " ; DATALINES;
139 163 160 160 147 149 149 122
132 144 130 144 102 124 144
RUN;
DATA CROSSED ; INPUT CROSSED @@ ;
GROUP = "CROSSED" ; DATALINES;
188 96 168 176 153 172 177 163
146 173 186 168 177 184 96
RUN;
```


Create a "paired dataset"

DATA WIDE; MERGE CROSSED INBRED;
DROP GROUP; PAIR = ${ }^{-}$_ ;
DIFF = CROSSED - INBRED ; RUN;

TITLE1 "CROSSED AND INBRED PLANTS"; PROC PRINT DATA = WIDE NOOBS; RUN;

	CROSSED AND	INBRED PLANTS	
PAIR	CROSSED	INBRED	DIFF
1	188	139	49
2	96	163	-67
3	168	160	8
4	176	160	16
5	153	147	6
6	172	149	23
7	177	149	28
8	163	122	41
9	146	132	14
10	173	144	29
11	186	130	56
12	168	144	24
13	177	102	75
14	184	124	60
15	96	144	-48
MEAN	161.53	140.60	20.93
VARIANCE	837.27	269.40	1424.64
SKEWNESS	-1.73	-0.80	-1.11

COMPARING MEANS USING THE MEANS OR TTEST PROCEDURES

```
TITLE1 "ASSUMING PLANTS WERE PAIRED";
PROC MEANS DATA=WIDE MEAN T PRT CLM MAXDEC=1;
VAR CROSSED INBRED DIFF ; RUN ;
```

PROC TTEST DATA=WIDE; PAIRED CROSSED*INBRED; RUN;
TITLE1 "PEARSON CORRELATION COEFFICIENT";
PROC CORR DATA=WIDE; VAR CROSSED INBRED; RUN;

The MEANS Procedure

Variable	Mean	t Value	Pr > \mid t\|	Lower 95\% CL for Mean	Upper 95\% CL for Mean
CROSSED	161.5	21.62	<0001	145.5	177.6
INBRED	140.6	33.18	$<.0001$	131.5	149.7
DIFF	20.9	2.15	0.0497	0.0	41.8

The CORR Procedure

2 Variables: CROSSED INBRED

Simple Statistics							
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum	
CROSSED	15	161.53333	28.93556	2423	96.00000	188.00000	
INBRED	15	140.60000	16.41341	2109	102.00000	163.00000	

Pearson C Prob	Coeffic der H 0 :	$N=15$
	CROSSED	INBRED
CROSSED	1.00000	$\begin{array}{r} -0.33476 \\ 0.2226 \end{array}$
INBRED	$\begin{array}{r} -0.33476 \\ 0.2226 \end{array}$	1.00000

The TTEST Procedure
Difference: CROSSED - INBRED

N	Mean	Std Dev	Std Err	Minimum	Maximum
15	20.9333	37.7444	9.7456	-67.0000	75.0000

Mean	95% CL Mean		Std Dev	95% CL Std Dev	
20.9333	0.0312	41.8355	37.7444	27.6337	59.5266

DF	t Value	$\operatorname{Pr}>\|\mathrm{t}\|$
14	2.15	0.0497

Agreement of INBRED and CROSSED

TITLE1 " CREATING TWO DATASETS ";
TITLE2 "IGNORING POSSIBLE PAIRING";
DATA LONGCROSS; SET CROSSED;
GROUP = "CROSSED"; HEIGHT=CROSSED; RUN;

DATA LONGINBRED ; SET INBRED ;
GROUP = "INBRED "; HEIGHT=INBRED; RUN;

DATA LONG; SET LONGCROSS LONGINBRED; RUN;

PROC TTEST DATA = LONG ;
CLASS GROUP ;
VAR HEIGHT ; RUN ;

GLM ANALYSIS ASSUMING A COMPLETELY RANDOMIZED DESIGN

The TTEST Procedure							
Variable: HEIGHT							
GROUP Method N Mean Std Dev Std Err Minimum Maximum CROSSED 15 161.5 28.9356 7.4711 96.0000 188.0 INBRED 15 140.6 16.4134 4.2379 102.0 163.0 Diff (1-2) Pooled 20.9333 23.5230 8.5894 Diff (1-2) Satterthwaite 20.9333 8.5894 $\|$ GROUP Method Mean 95% CL Mean Std Dev 95% CL CROSSED 161.5 145.5 177.6 28.9356 21.1845 45.6342 INBRED 140.6 131.5 149.7 16.4134 12.0167 25.8856 Diff (1-2) Pooled 20.9333 3.3387 38.5279 23.5230 18.6674 31.8138 Difff (1-2) Satterthwaite 20.9333 3.1277 38.7390							

Method	Variances	DF	t Value	$\operatorname{Pr}>\|t\|$
Pooled	Equal	28	2.44	0.0214
Satterthwaite	Unequal	22.164	2.44	0.0233

Equality of Variances				
Method	Num DF	Den DF	F Value	Pr > F
Folded F	14	14	3.11	0.0421

```
MY NOTE: RATIO OF SAMPLE VARIANCES
    = (28.94/16.41)2 = 3.11
```


End of Lecture 3

Next up in Part 4 Lecture 1: Categorical Data

