

Who I am...

Pascal Tyrrell, PhD

Associate Professor
Department of Medical Imaging, Faculty of Medicine Institute of Medical Science, Faculty of Medicine
Department of Statistical Sciences, Faculty of Arts and Science

CREATING A STATISTICAL MODEL

A researcher is studying the relationship between the decrease in a person's blood pressure and personal and environmental variables, to which they are exposed.

Knowledge from observational studies and laboratory findings suggest that the decrease in a person's blood pressure is related to their sex, age, and a drug believed to reduce blood pressure.

MODEL FOR DECREASE IN BLOOD PRESSURE (DBP)

MODEL $\quad D B P_{j}=K+E R R O R_{j} \quad j=1$ to n
$E R R O R_{j}=D B P_{j}-K$
Sum of Squares $S S=\sum_{j=1}^{j=n}\left(D B P_{j}-K\right)^{2}$
The Sum of Squared Deviations about K is a minimum if K is equal to the sample mean $\overline{\mathrm{DBP}}$.

Therefore the sample mean is called the least squares estimate of K.

MODEL FOR DECREASE IN BLOOD PRESSURE (DBP)

$$
\text { MODEL } \quad D B P_{j}=\mu+E R R O R_{j} j=1 \text { to } n
$$

$$
E R R O R_{j}=D B P_{j}-\mu \quad \text { Residual }=D B P_{j}-\overline{D B P}
$$

$$
\text { Sample Variance } s^{2}=\frac{\sum_{j=1}^{j=n}\left(D B P_{j}-\overline{D B P}\right)^{2}}{n-1}
$$

The Sum of Squared Deviations about the sample mean divided by $(n-1)$ is an unbiased estimator of the variance σ^{2} that is in the formula of the Gaussian probability density function.

STRAIGHT LINE MODEL

$$
\begin{aligned}
& D B P_{j}=\beta_{0}+\beta_{1} \times A G E_{j}+E R R O R_{j} \\
& E R R O R_{j}=D B P_{j}-\beta_{0}-\beta_{1} \times A G E_{j} \\
& \quad j=1 \text { ton }
\end{aligned}
$$

FITTING A STRAIGHT LINE

Least square estimates of the intercept and slope of a straight line model

$$
\widehat{\beta_{1}}=\frac{\sum_{j=1}^{j=n}\left(A G E_{j}-\overline{A G E}\right) \times D B P_{j}}{\sum_{j=1}^{j=n}\left(A G E_{j}-\overline{A G E}\right)^{2}} \quad \widehat{\beta_{0}}=\overline{D B P}-\widehat{\beta_{1}} \times \overline{A G E}
$$

$R E S I D U A L_{j}=O B S E R V E D-P R E D I C T E D=D B P_{j}-\widehat{\beta_{0}}-\widehat{\beta_{1}} \times A G E_{j}$
Sample Variance $\quad s^{2}=\frac{\sum_{j=1}^{j=n}\left(R E S I D U A L_{j}\right)^{2}}{n-2}$
The Sum of Squared Deviations about the sample mean divided by $(n-2)$ is an unbiased estimator of the variance σ^{2} that is in the formula of the Gaussian probability density function.

MULTIPLE LINEAR REGRESSION

$$
D B P_{j}=\beta_{0}+\beta_{1} \times D R U G_{j}+\beta_{2} \times S E X_{j}+\beta_{3} \times A G E_{j}+E R R O R_{j}
$$

$j=1$ to n
DRUG variable can assume values Aspirin and Tynlenol SEX variable can assume values Female and Male

Predicted $D B P_{j}=\widehat{D B P}=\widehat{\beta_{0}}+\widehat{\beta_{1}} \times D R U G_{j}+\widehat{\beta_{2}} \times S E X_{j}+\widehat{\beta_{3}} \times A G E_{j}$
$\operatorname{RESIDUAL} L_{j}=D B P_{j}-\widehat{D B P}_{j} \quad$ Sample Variance $\quad s^{2}=\frac{\sum_{j=1}^{j=n}\left(R E S I D U A L_{j}\right)^{2}}{n-4}$

Sum of Squared Residuals divided by $(n-4)$ is an unbiased estimator of the variance σ^{2} that is in the formula of the Gaussian probability density function.

DRUG SEX INTERACTION IN MULTIPLE LINEAR REGRESSION

$D B P_{j}=\beta_{0}+\beta_{1} \times D R U G_{j}+\beta_{2} \times S E X_{j}+\beta_{3} \times D R U G \times S E X+\beta_{4} \times A G E_{j}+E R R O R_{j}$
$j=1$ to n
Predicted $D B P_{j}$
$=\widehat{D B P}_{j}=\widehat{\beta_{0}}+\widehat{\beta_{1}} \times D R U G_{j}+\widehat{\beta_{2}} \times S E X_{j}+\widehat{\beta_{3}} \times D R U G \times S E X+\widehat{\beta_{4}} \times A G E_{j}$
$j=1$ to n
$R E S I D U A L_{j}=D B P_{j}-\widehat{D B P}_{j} \quad$ Sample Variance $s^{2}=\frac{\sum_{j=1}^{j=n}\left(R E S I D U A L_{j}\right)^{2}}{n-5}$
If the estimate $\widehat{\beta_{3}}$ is large it may mean that there is DRUG * SEX interaction which means that the size and possibly also the sign of the drug effect is different among males and females. Sample variance s^{2} is unbiased estimator of σ^{2}.

What values should these betas have to minimize the error? Good question! All statistical programs produce values for these unknown betas so that the variation among the error terms is minimized. How is the variation measured? A statistic called the variance measures the variation among the error terms. Values given to the beta constants will be such that the sum of the error terms is zero and their variance is minimized. Is this variance an estimate of the variance that is in the Gaussian probability model. YES !!!!!!

TITLE1 " COMPARING SAME MEANS USING GLM PROCEDURE " ; DATA STUDY ; INPUT COLOUR \$ NAME \$ ID RTIME ; DATALINES ;

GREEN	ABEL	1	232.6
RED	ABEL	1	232.0
GREEN	ADAM	2	257.5
RED	ADAM	2	250.5
GREEN	AMOS	3	253.1
RED	AMOS	3	237.1
GREEN	ANDY	4	205.4
RED	ANDY	4	201.5
GREEN	BART	5	226.0
RED	BART	5	211.1

RUN; $\quad * *$ NOTE: MOST DATASETS HAVE A LINE OF DATA FOR EACH SUBJECT;

USING GLM PROCEDURE TO COMPARE TWO OR MORE SAMPLE MEANS

```
TITLE1 " ASSUMING A COMPLETELY RANDOMIZED DESIGN " ;
PROC GLM DATA = STUDY ; CLASS COLOUR ;
MODEL RTIME = COLOUR ;
LSMEANS COLOUR / TDIFF PDIFF STDERR CL ; RUN ;
TITLE1 " ASSUMING A RANDOMIZED BLOCK DESIGN " ;
PROC GLM DATA = STUDY ; CLASS COLOUR ID ;
MODEL RTIME = COLOUR ID ; **Note ID in MODEL statement ;
LSMEANS COLOUR / TDIFF PDIFF STDERR CL ; RUN ;
```

NOTE: ID Variable can be replaced by the NAME variable in the CLASS and MODEL statements.

ASSUMING A COMPLETELY RANDOMIZED DESIGN

The GLM Procedure
Dependent Variable: RTIME

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	179.776000	179.776000	0.43	0.5323
Error	8	3377.500000	422.187500		
Corrected Total	9	3557.276000			

MY NOTE: Square Root $0.426=0.65$ and before we had $\mathrm{t}=0.65$

R-Square	Coeff Var	Root MSE	RTIME Mean
0.050538	8.907232	20.54720	230.6800

Source	DF	Type I SS	Mean Square	F Value	Pr $>F$
COLOUR	1	179.7760000	179.7760000	0.43	0.5323

Source	DF	Type III SS	Mean Square	F Value	Pr $>$ F
COLOUR	1	179.7760000	179.7760000	0.43	0.5323

< SAME AS BEFORE!

[^0]The GLM Procedure
Least Squares Means

COLOUR	RTIME LSMEAN	Standard Error	$\begin{array}{r} \text { H0:LSMEAN }=0 \\ \mathrm{Pr}>\|\mathrm{t}\| \end{array}$	H0:LSMean1=LSMean2	
				t Value	$\mathrm{Pr}>\|\mathrm{t}\|$
GREEN	234.920000	9.188988	<. 0001	0.65	0.5323
RED	226.440000	9.188988	<. 0001		

COLOUR	RTIME LSMEAN	95% Confidence Limits	
GREEN	234.920000	213.730156	256.109844
RED	226.440000	205.250156	247.629844

Least Squares Means for Effect COLOUR			
\mathbf{i}	j	Difference Between Means	
$\mathbf{1}$	$\mathbf{2}$	8.48% Confidence Limits for LSMean(i)-LSMean(j)	

MY NOTE: Confidence Interval includes zero !!

ASSUMING A RANDOMIZED BLOCK DESIGN

The GLM Procedure
Dependent Variable: RTIME

Source	DF	Sum of Squares	Mean Square	F Value	Pr $>$ F
Model	5	3465.762000	693.152400	30.30	0.0028
Error	4	91.514000	22.878500		
Corrected Total	9	3557.276000			

R-Square	Coeff Var	Root MSE	RTIME Mean
0.974274	2.073499	4.783147	230.6800

Matched Pairs Design

<< MY NOTE: 3465.76 / $3557.27=0.974$

Source	DF	Type I SS	Mean Square	F Value	$\operatorname{Pr}>F$
COLOUR	1	179.776000	179.776000	7.86	0.0487
ID	4	3285.986000	821.496500	35.91	0.0022

Source	DF	Type III SS	Mean Square	F Value	Pr > F
COLOUR	1	179.776000	179.776000	7.86	0.0487
ID	4	3285.986000	821.496500	35.91	0.0022

<< Same as before

[^1]The GLM Procedure
Least Squares Means

COLOUR	RTIME LSMEAN	Standard Error	$\begin{array}{r} \mathrm{H} 0: \text { LSMEAN }=0 \\ \mathrm{Pr}>\|\mathrm{t}\| \end{array}$	H0:LSMean1=LSMean2	
				t Value	$\mathrm{Pr}>\|\mathrm{t}\|$
GREEN	234.920000	2.139089	<. 0001	2.80	0.0487
RED	226.440000	2.139089	<. 0001		

COLOUR	RTIME LSMEAN	95% Confidence Limits	
GREEN	234.920000	228.980938	240.859062
RED	226.440000	220.500938	232.379062

Least Squares Means for Effect COLOUR				
\mathbf{i}	j	Difference Between Means	95\% Confidence Limits for LSMean(i)-LSMean(j)	
$\mathbf{1}$	$\mathbf{2}$	8.480000	0.080898	16.879102

MY NOTE: 95\% Confidence Interval does not contain zero.

WHAT IS THE ADVANTAGE OF GENERAL LINEAR MODEL (GLM) OVER THE TTEST PROCEDURE ??

TITLE1 " COMPARING TWO DRUGS "; PROC GLM DATA=STUDY; CLASS DRUG SEX ; MODEL RTIME = DRUG SEX DRUG * SEX AGE WEIGHT / SS3;

LSMEANS DRUG/TDIFF PDIFF STDERR CL; LSMEANS SEX /TDIFF PDIFF STDERR CL; RUN ;

Reaction time variable RTIME is OUTCOME variable.
PRIMARY QUESTION: does the variable DRUG predict OUTCOME ? In other words are the DRUG and OUTCOME variables associated ?

If SEX, AGE and WEIGHT predict OUTCOME including them reduces the residual variance, increases R^{2} and reduces their p values. If the effect of drug is greater for males than females that is called interaction (DRUG*SEX).

If the predictor variables SEX, AGE and WEIGHT are also associated with the DRUG variable then excluding them produces biased estimates of the DRUG effect. They are then called CONFOUNDERS.

Product variable DRUG * SEX is called INTERACTION. If it is large it means that the size of the DRUG effect is different for males and females.

In the cartoon the loser assumed his friend would let go of the rock and feather at the same time. That was not part of the bet.

In many studies researchers may mistakenly think that the comparison was fair and valid. In a study the proportion of males in the exposed and unexposed groups may be quite different AND if males are at higher risk of disease the comparison would be biased.

PROCEDURES SIMILAR TO GLM USED FOR ALL 4 OUTCOMES

THREE COMPLETELY RANDOMIZED RANDOMIZED BLOCK DESIGNS SPLIT PLOT

TREATMENT ONE WAY
2 BY 2 FACTORIAL LAYOUT

OUTCOME	CONTINUOUS	Blood Pressure	Serum Cholesterol
VARIABLE	BINARY	Death Yes/No	Cure Yes/No
	COUNT	Number of deaths	Number of falls
	SURVIVAL TIME	Time to Death	Time to Cure

End of Lecture 1

Next up in Part 2 Lecture 2: Study Design

[^0]:

[^1]:

