

Who I am...

Pascal Tyrrell, PhD

Associate Professor
Department of Medical Imaging, Faculty of Medicine Institute of Medical Science, Faculty of Medicine
Department of Statistical Sciences, Faculty of Arts and Science

QUESTIONS ABOUT A STUDY COMPARING TWO BLOOD PRESSURE DRUGS

Let's suppose your friend is excited about a study in which the mean decrease in blood pressure was greater in a group of patients on a new drug compared to a group on an old drug. Before you also get excited what questions would you ask her about the study?

THE SEVEN QUESTIONS

1. How long was the follow up period ?
2. Did the new drug have any serious side effects?
3. How were patients allocated to the groups ?
4. How large is the mean DBP difference between groups?
5. How many patients were in each group ?
6. How large is the Variation in response among patients?
7. Are the two groups comparable ?

NOTE: DBP = Decrease in blood pressure.

CENTRAL LIMIT THEOREM

CANADIAN GOVERNMENT POPULATION HEALTH SURVEY OF 6,000 CANADIAN WOMEN

One measurement made was the Body Mass Index (BMI):

$$
\text { BMI }=\text { WEIGHT }(\mathrm{kg}) / \mathrm{HEIGHT}(\mathrm{~m})^{2}
$$

CENTRAL LIMIT THEOREM

POPULATION OF 6,000 FEMALES

*NOTE THE POSITIVE SKEWNESS
LOG NORMAL DISTRIBUTION MEAN $=23.4$ VARIANCE $=15.5$ SKEWNESS $=3$

CENTRAL LIMIT THEOREM

Paul randomly selected a sample of 5 women from this database and calculated their mean BMI. He then placed these women back into the population and again randomly selected a sample of five women and calculated their mean BMI. He did this 1,000 times and produced the histogram of these 1,000 means. He did this 2 more times with each sample having 10 women and then again with each sample having 25 women.

DISTRIBUTION OF 1,000 SAMPLE MEANS WITH N = 5

SAMPLE OF 1,000 RANDOMLY SELECTED MEANS OF 5 FEMALES

AND OVERLAPPING GAUSSIAN PROBABILITY DISTRIBUTION

DISTRIBUTION OF 1,000 MEANS N = 10

SAMPLE OF 1,000 RANDOMLY SELECTED MEANS OF 10 FEMALES
AND OVERLAPPING GAUSSIAN PROBABILITY DISTRIBUTION

SAMPLING DISTRIBUTION OF MEAN $(\mathrm{N}=25)$ FROM LOG NORMAL POPULATION WITH MEAN $=23.4$ VARIANCE $=15.5$ SKEWNESS $=3$

SAMPLE OF 1,000 RANDOMLY SELECTED MEANS OF 25 FEMALES
 AND OVERLAPPING GAUSSIAN PROBABILITY DISTRIBUTION

NEMEMI3

CENTRAL LIMIT THEOREM

The probability distribution of a sample mean of N observed values randomly selected from a population approaches the Gaussian (Normal) probability distribution as N approaches infinity.

As " N approaches infinity" is mathematician talk. We saw that the distribution of sample means was approximately Gaussian for N as small as 25.

CENTRAL LIMIT THEOREM

Pierre Simon La Place 1749-1827

Carl Friedrich Gauss 1777-1855

GAUSSIAN PROBABILITY DENSITY FUNCTION

$$
f(\overline{B M I})=\frac{e^{-\frac{(\overline{B M I}-\mu)^{2}}{2 \times \frac{\sigma^{2}}{n}}}}{\sqrt{2 \pi \times \frac{\sigma^{2}}{n}}}
$$

$$
\text { with } \pi=3.1416 \quad e=2.7163
$$

Sample mean $\overline{B M I}$ is unbiased estimator of theoretical (population)mean μ. Many sample means each with many BMI values selected randomly from population has a bell shaped Normal probability distribution with mean μ and variance σ^{2}. The parameter σ, standard deviation of variable BMI, is an important measure of variation. The variance of the mean $\overline{B M I}$
variable is $\frac{\sigma^{2}}{n}$ with standard error $\sqrt{\frac{\sigma^{2}}{n}}$

Standard Gaussian Probability Density Function

If $Z=\frac{\left(\overline{B M I_{1}}-\overline{B M I_{2}}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{2 \times \frac{\sigma^{2}}{n}}} \quad$ then $f(Z)=\frac{e^{-Z^{2}}}{\sqrt{2 \pi}}$
and Probability $(-1.96<Z<1.96)=0.95$
Mean of the standard Gaussian variable Z is 0 .
Variance of Z is 1 and Standard deviation of Z is 1 .
$\sqrt{2 \times \frac{\sigma^{2}}{n}}$ is the standard error of the difference of
two INDEPENDENT sample means.
HBAH

