
DATALINES ;
NO 2 YES 8
RUN ;
PROC FREQ DATA $=$ FINAL ; WEIGHT N;
TABLES CURE / BINOMIAL ; EXACT BINOMIAL ; RUN ;

CURE	Frequency	Percent	Cumulative Frequency	Cumulative Percent
NO	2	20.00	2	20.00
YES	8	80.00	10	100.00

Binomial Proportion

For CURE $=$ NO the Proportion (P) is 0.2000 with a Sample Size of 10

RESULTS FROM SAS FREQ PROCEDURE (continued)

Binomial Proportion

CURE $=$ NO	
Proportion (P)	0.2000
ASE	0.1265

95\% Lower Conf Limit 0.0000
95\% Upper Conf Limit 0.4479

Exact Conf Limits
95\% Lower Conf Limit 0.0252
95\% Upper Conf Limit 0.5561

Test of $\mathrm{HO}:$ Proportion $=0.5$	
ASE under H0	0.1581
Z	-1.8974
One-sided $\mathrm{Pr}<\mathrm{Z}$	0.0289
Two-sided $\mathrm{Pr}>\|\mathrm{Z}\|$	0.0578
Exact Test	
One-sided $\mathrm{Pr}<=\mathrm{P}$	0.0547
Two-sided $=2$ * One-sided	0.1094

[ASE = Asymptotic standard error]

MY NOTE: Because p value is greater than $0.0595 \% \mathrm{Cl}$ contains $\mathrm{P}=0.50$

TBAW

A popular measure of the size of the variability expected between sample proportions repeatedly selected from a population is called the standard error.

Standard Error(SE) of a Sample Proportion p

$$
S E=\sqrt{\frac{p \times q}{n}}=\sqrt{\frac{p \times(1-p)}{n}} \quad p=0.8
$$

Standard Error of a Sample Proportion under the Assumption that the Probability of Success is P

In the previous output from the FREQ procedure the standard error of a proportion was reported twice.

First, for the observed proportion $\mathrm{p}=0.2$ and next for the proportion expected under the Null Hypothesis $\mathrm{P}=0.50$. In both cases $\mathrm{n}=10$.

$$
\begin{aligned}
& \text { Standard Error of Proportion }(2 / 10)=0.2 \\
& S E=\sqrt{\frac{0.2 \times 0.8}{10}}=0.1265 \\
& \text { Standard Error of Probability } 0.5 \text { for } n=10 \\
& S E=\sqrt{\frac{0.5 \times 0.5}{10}}=0.1581
\end{aligned}
$$

Exact Conf Limits 95\% Lower Conf Limit 0.0252 95\% Upper Conf Limit 0.5561

Test of H0: Proportion = 0.5
Exact Test One-sided $\mathrm{Pr}<=\mathrm{P}$
0.0547

Two-sided $=2$ * One-sided
0.1094

MY NOTE: The 2-Tail p value $=0.1094$ and the 95% confidence interval does contain 0.5.
The Null Hypothesis $\left(\mathrm{H}_{0}\right)$ is that $\mathrm{P}_{\text {но }}=0.50$

DATA FINAL ; INPUT CURE \$ N @@ ;
DATALINES ;
NO 1 YES 9
RUN ;

PROC FREQ DATA = FINAL ; WEIGHT N ;
TABLES CURE / BINOMIAL ; EXACT BINOMIAL ; RUN ;

CURE	Frequency	Percent	Cumulative Frequency	Cumulative Percent
NO	1	$* * 10.00$	1	10.00
YES	9	90.00	10	100.00

** Scientist discovered an error and made the correction !

Exact Conf Limits 95\% Lower Conf Limit 0.0025 95\% Upper Conf Limit 0.4450

Test of H_{0} : Proportion $=0.5$
Exact Test One-sided $\mathrm{Pr}<=\mathrm{P} \quad 0.0107$
Two-sided = 2 * One-sided 0.0214

MY NOTE: The 2 -Tail p value $=0.0215$ and the 95% confidence interval does NOT contain $\mathrm{P}_{\text {но }}=0.5$

CONCLUSION

If this result is due to chance the probability of getting 9 or more successes for the new drug is 0.0107 and the probability of getting one or fewer successes is also 0.0107

The 2 -tail p value 0.0214 is the probability of getting a result as extreme or more extreme than the observed difference under the Null Hypothesis that the difference was due to chance, that is, $\mathrm{P}=0.5$

CONCLUSION (con’t)

We would report that 90 percent of the patients cured on the new drug is SIGNIFICANTLY greater than the null hypothesized proportion of 0.5 .
($\mathrm{p}=0.0214$ and $95 \% \mathrm{Cl}=0.0025,0.4450$)

NOTE: 95\% confidence interval CI does NOT contain the Hypothetical Probability P = 0.5

End of Lecture 1

Next up in Part 1 Lecture 2: The Central Limit Theorem

