

Part 1 Lecture 1c GAMES AND CONCEPTS

TITLE1 " FREQ PROCEDURE IS FIRST PROGRAM RUN ";

DATA FINAL; INPUT CURE \$ N @@; DATALINES; NO 2 YES 8

RUN ;

PROC FREQ DATA = FINAL ; WEIGHT N ;
TABLES CURE / BINOMIAL ; EXACT BINOMIAL ; RUN ;

CURE	Frequency	Percent	Cumulative Frequency	Cumulative Percent
NO	2	20.00	2	20.00
YES	8	80.00	10	100.00

Binomial Proportion For CURE = NO the Proportion (P) is 0.2000 with a Sample Size of 10

RESULTS FROM SAS FREQ PROCEDURE (continued)

Binomial Proportion				
CURE = NO				
Proportion (P)	0.2000			
ASE	0.1265	Test of H_0 : Droportion -0.5		
95% Lower Conf Limit	0.0000	100 - 100		
		ASE under H0	0.1581	
95% Upper Conf Limit	0.4479	Z	-1.8974	
		One-sided Pr < Z	0.0289	
		Two-sided Pr > Z	0.0578	
Exact Conf Limits				
95% Lower Conf Limit	0.0252	Exact Test		
		One-sided Pr <= P	0 0547	
95% Upper Conf Limit	0.5561			
		Two-sided = 2 * One-sided	0.1094	

[ASE = Asymptotic standard error] MY NOTE: Because p value is greater than 0.05 95% CI contains P = 0.50

A popular measure of the size of the variability expected between sample proportions repeatedly selected from a population is called the standard error.

Standard Error(SE) of a Sample Proportion p

Medical Imaging

NIVERSITY OF TORONTO

$$SE = \sqrt{\frac{p \times q}{n}} = \sqrt{\frac{p \times (1-p)}{n}} \quad p = 0.8$$

Standard Error of a Sample Proportion under the Assumption that the Probability of Success is P

$$SE = \sqrt{\frac{P \times Q}{n}} = \sqrt{\frac{P \times (1 - P)}{n}} \quad P = 0.50$$

In the previous output from the FREQ procedure the standard error of a proportion was reported twice.

First, for the observed proportion p = 0.2 and next for the proportion expected under the Null Hypothesis P = 0.50. In both cases n=10.

Standard Error of Proportion (2/10) = 0.2

$$SE = \sqrt{\frac{0.2 \times 0.8}{10}} = 0.1265$$

Standard Error of Probability 0.5 for
$$n = 10$$

$$SE = \sqrt{\frac{0.5 \times 0.5}{10}} = 0.1581$$

Exact Conf Limits95% Lower Conf Limit0.025295% Upper Conf Limit0.5561

Test of H0: Proportion = 0.5Exact TestOne-sided Pr <= P</td>0.0547Two-sided = 2 * One-sided0.1094

<u>MY NOTE</u>: The 2-Tail p value = 0.1094 and the 95% confidence interval does contain 0.5. The Null Hypothesis (H_0) is that P_{H0} = 0.50

TITLE1 " FREQ PROCEDURE IS FIRST PROGRAM RUN ";

DATA FINAL ; INPUT CURE \$ N @@ ; DATALINES ; NO 1 YES 9

RUN ;

PROC FREQ DATA = FINAL ; WEIGHT N ;
TABLES CURE / BINOMIAL ; EXACT BINOMIAL ; RUN ;

CURE	Frequency	Percent	Cumulative Frequency	Cumulative Percent
NO	1	**10.00	1	10.00
YES	9	90.00	10	100.00

****** Scientist discovered an error and made the correction !

Exact Conf Limits 95% Lower Conf Limit 0.0025 95% Upper Conf Limit 0.4450

Test of H_0 : Proportion = 0.5 Exact Test One-sided Pr <= P 0.0107 Two-sided = 2 * One-sided 0.0214

<u>MY NOTE</u>: The 2-Tail p value = 0.0215 and the 95% confidence interval does NOT contain $P_{HO} = 0.5$

CONCLUSION

If this result is due to chance the probability of getting 9 or **more** successes for the new drug is 0.0107 and the probability of getting one or **fewer** successes is also 0.0107

The 2-tail p value 0.0214 is the probability of getting a result as extreme or more extreme than the observed difference under the Null Hypothesis that the difference was due to chance, that is, P = 0.5

We would report that 90 percent of the patients cured on the new drug is **SIGNIFICANTLY** greater than the null hypothesized proportion of 0.5.

(p = 0.0214 and 95% CI = 0.0025, 0.4450)

NOTE: 95% confidence interval CI does NOT contain the Hypothetical Probability P = 0.5

Next up in Part 1 Lecture 2: The Central Limit Theorem

