

Part 1 Lecture 1b GAMES AND CONCEPTS

YATES' CORRECTION FACTOR FOR CONTINUITY

The curve superimposed over a Binomial histogram is the Gaussian probability distribution and can be used to approximate Binomial probabilities.

$P(B_4 \ge 3) = 0.2500 + 0.0625 = 0.3125$ $P(Normal \ge 3) = 0.1587$ Poor approximation $P(Normal \ge 2.5) = 0.3085$ Good approximation

Jacob Bernoulli 1654 – 1705

Frank Yates 1902 – 1994

A flip of a coin is called a Bernoulli trial

Introduced the Continuity Correction of 0.5

GAUSSIAN PROBABILITY DENSITY FUNCTION

p is the proportion of sick subjects in a random sample P is proportion of sick subjects in a population sample

In our example the possible proportions were 0.000, 0.0625, 0.25, 0.375, 0.25, 0.0625, 1.000

Single cohort DESIGN

A researcher tests the curative ability of a new drug.

She follows 10 patients and records their sex, age and weight (outcome predictors).

In 8 of the 10 patients the new drug is successful. In 2 patients the drug has no effect.

We begin by assuming that the probability of a cure is the same for each patient and is 0.5. This assumption is called the NULL HYPOTHESIS or the CHANCE HYPOTHESIS.

Therefore the probability of getting an 8/2 split can be obtained using the Binomial probability distribution with P = 0.5

Binomial Distribution n = 10 P = 0.5

h
$$P(B_{10} = h)$$
 $P(B_{10} \le h)$ $P(B_{10} \ge h)$

0	0.00098	0.00098	1.00000
1	0.00977	0.01074	0.99902
2	0.04395	0.05469 <<	0.98926
3	0.11719	0.17188	0.94531
4	0.20508	0.37695	0.82813
5	0.24609	0.62305	0.62305
6	0.20508	0.82813	0.37695
7	0.11719	0.94531	0.17188
8	0.04395	0.98926 >>	0.05469
9	0.00977	0.99902	0.01074
10	0.00098	1.00000	0.00098

BINOMIAL PROBABILITY MODEL N = 10 P = 0.50

TITLE1 " FREQ PROCEDURE IS FIRST PROGRAM RUN ";

DATA FINAL; INPUT CURE \$ N @@; DATALINES; NO 2 YES 8 RUN;

PROC FREQ DATA = FINAL ; WEIGHT N ;
TABLES CURE / BINOMIAL ; EXACT BINOMIAL ; RUN ;

CURE	Frequency	Percent	Cumulative Frequency	Cumulative Percent
NO	2	20.00	2	20.00
YES	8	80.00	10	100.00

Fundamental characteristics of a SAS program

(1) Each SAS statement ends in a semi-colon (;)

(2) The DATA statement gives the name "FINAL" to the dataset

(3) The INPUT statement defines the variables

The CURE variable has character values - NO and YES, and must be followed by a \$ sign

The N variable is a Numeric Variable

The data paragraph ends with a "RUN;" statement

(5) The procedure paragraph starts with the word PROC. In this example the FREQ procedure is called to create a frequency table.

(6) The WEIGHT statement tells the program that 2 subjects were not cured and 8 patients were cured. If we did not use the WEIGHT statement then we would type in 10 lines of data, two NOs and 8 YESs.

(7) The TABLE statement defines a table of counts, in this case, a one dimensional table of 2 not cured and 8 cured patients.

(8) We will use the BINOMIAL probability distribution to calculate an exact p value. We are testing the hypothesis that the unknown probability P = 0.5, that is, the two drugs are of equal efficacy.

