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3.1 Exploratory Data Analysis 

3

Objectives
 Use a scatter plot to examine the relationship between 

two continuous variables.
 Use correlation statistics to quantify the degree of 

association between two continuous variables.
 Describe potential misuses of the correlation 

coefficient.
 Use the CORR procedure to obtain Pearson 

correlation coefficients.

3  

4

Overview of Statistical Models

4

Type of 
Predictors

Type of 
Response

Categorical Continuous Continuous and 
Categorical

Continuous Analysis of 
Variance 
(ANOVA)

Ordinary Least 
Squares (OLS)
Regression

Analysis of 
Covariance 
(ANCOVA)

Categorical Contingency 
Table Analysis 
or Logistic 
Regression

Logistic 
Regression

Logistic 
Regression
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5

Two Continuous Variables

 

In the previous chapter, you learned that when you have a discrete predictor variable and a continuous 
outcome variable you use ANOVA to analyze your data. In this section, you have two continuous 
variables. 

You use correlation analysis to examine and describe the relationship between two continuous variables. 
However, before you use correlation analysis, it is important to view the relationship between two 
continuous variables using a scatter plot. 

Example: A random sample of high school students is selected to determine the relationship between a 
person’s height and weight. Height and weight are measured on a numeric scale. They have a 
large, potentially infinite number of possible values, rather than a few categories such as short, 
medium, and tall. Therefore, these variables are considered to be continuous. 
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6

Scatter Plots

6  

Scatter plots are two-dimensional graphs produced by plotting one variable against another within a set of 
coordinate axes. The coordinates of each point correspond to the values of the two variables. 

Scatter plots are useful to accomplish the following: 
• explore the relationships between two variables 
• locate outlying or unusual values 
• identify possible trends 
• identify a basic range of Y and X values 
• communicate data analysis results 
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7

Relationships between Continuous Variables

7  

Describing the relationship between two continuous variables is an important first step in any statistical 
analysis. The scatter plot is the most important tool that you have in describing these relationships. The 
diagrams above illustrate some possible relationships. 

1. A straight line describes the relationship. 

2. Curvature is present in the relationship. 

3. There could be a cyclical pattern in the relationship. You might see this when the predictor is time. 

4. There is no clear relationship between the variables. 
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8

Correlation

8  

As you examine the scatter plot, you can also quantify the relationship between two variables with 
correlation statistics. Two variables are correlated if there is a linear association between them. If not, the 
variables are uncorrelated. 

You can classify correlated variables according to the type of correlation: 

Positive One variable tends to increase in value as the other variable increases in value. 

Negative One variable tends to decrease in value as the other variable increases in value. 

Zero No linear relationship exists between the two variables (uncorrelated). 
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9

Pearson Correlation Coefficient

9

weak STRONGSTRONG

Correlation Coefficient

0-1 1

Negative Positive

 

Correlation statistics measure the degree of linear association between two variables. A common 
correlation statistic used for continuous variables is the Pearson correlation coefficient. Values of 
correlation statistics are as follows: 
• between −1 and 1 
• closer to either extreme if there is a high degree of linear association between the two variables 
• close to 0 if there is no linear association between the two variables 
• greater than 0 if there is a positive linear association 
• less than 0 if there is a negative linear association 
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10

Hypothesis Test for a Correlation
 The parameter representing correlation is r.
 r is estimated by the sample statistic r.
 H0: r=0
 Rejecting H0 indicates only great confidence that r

is not exactly zero.
 A p-value does not measure the magnitude of the 

association.
 Sample size affects the p-value.

1 0  

The null hypothesis for a test of a correlation coefficient is r=0. Rejecting the null hypothesis only means 
that you can be confident that the true population correlation is not 0. Small p-values can occur (as with 
many statistics) because of very large sample sizes. Even a correlation coefficient of 0.01 can be 
statistically significant with a large enough sample size. Therefore, it is important to also look at the value 
of r itself to see whether it is meaningfully large. 
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11

Correlation versus Causation

 

Common errors can be made when you interpret the correlation between variables. One example of this is 
using correlation coefficients to conclude a cause-and-effect relationship. 
• A strong correlation between two variables does not mean change in one variable causes the other 

variable to change, or vice versa. 
• Sample correlation coefficients can be large because of chance or because both variables are affected 

by other variables. 
• “Correlation does not imply causation.” 
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12

Apparent Relationship

1 2
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r=-0.199

 

An example of reaching errant conclusions comes from U.S. Department of Education data from the 
Scholastic Aptitude Test (SAT) from 2005. The scatter plot above shows each state’s average total SAT 
score versus the average state expenditure in U.S. dollars per public school student. The correlation 
between the two variables is −0.199. Looking at the plot and at this statistic, you might argue (and many 
argued) that more state spending does little or might even hurt student performance. 
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Missing Link

1 3
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r=-0.878

 

The 2005 report did not take into account the differences among the states in the percentage of students 
taking the SAT. There are many reasons for the varying participation rates. Some states have lower 
participation because their students primarily take the rival ACT standardized test. Others have rules 
requiring even non-college-bound students to take the test. In low participating states, often only the 
highest performing students choose to take the SAT. Another reported table shows the relationship 
between participation rate (percent taking the SAT) and average SAT total score. The correlation is 
−0.878, indicating that states with lower participation rates tend to have higher average scores. 
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The Truer Story

1 4
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If you adjust for differences in participation rates, the conclusions about the effect of expenditures might 
change. In this case, there seems to be a slight positive linear relationship between expenditures and 
average total score on the SAT when you first adjust for participation rates. (These types of adjustments 
are described in greater detail in the sections about multiple regression.) 

Simple correlations often do not tell the whole story. 
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Missing Another Type of Relationship

1 5
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In the scatter plot, the variables have a fairly low Pearson correlation coefficient. Why? 
• Pearson correlation coefficients measure linear relationships. 
• A Pearson correlation coefficient close to 0 indicates that there is not a strong linear relationship 

between two variables. 
• A Pearson correlation coefficient close to 0 does not mean that there is no relationship of any kind 

between the two variables. 

In this example, there is a curvilinear relationship between the two variables. 
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Extreme Data Values

1 6

r=0.02 r=0.82

 

Correlation coefficients are highly affected by a few extreme values on either variable’s range. The scatter 
plots show that the degree of linear relationship is mainly determined by one point. If you include the 
unusual point in the data set, the correlation is close to 1. If you do not include it, the correlation is close 
to 0. 

In this situation, follow these steps: 

1. Investigate the unusual data point to make sure it is valid. 

2. If the data point is valid, collect more data between the unusual data point and the group of data 
points to see whether a linear relationship unfolds. 

3. Try to replicate the unusual data point by collecting data at a fixed value of x (in this case, x=10). This 
determines whether the data point is unusual. 

4. Compute two correlation coefficients, one with the unusual data point and one without it. This shows 
how influential the unusual data point is in the analysis. In this case, it is greatly influential. 
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The CORR Procedure
General form of the CORR procedure:

1 7

PROC CORR DATA=SAS-data-set <options>;
VAR variables;
WITH variables; 
ID variables;

RUN;

 

You can use the CORR procedure to produce correlation statistics and scatter plots for your data. By 
default, PROC CORR produces Pearson correlation statistics and corresponding p-values. 

Selected CORR procedure statements: 

VAR specifies variables for which to produce correlations. If a WITH statement is not specified, 
correlations are produced for each pair of variables in the VAR statement. If the WITH statement 
is specified, the VAR statement specifies the column variables in the correlation matrix. 

WITH produces correlations for each variable in the VAR statement with all variables in the WITH 
statement. The WITH statement specifies the row variables in the correlation matrix. 

ID specifies one or more additional tip variables to identify observations in scatter plots and scatter 
plot matrices. 
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The CORR Procedure
 Scatter plots and scatter plot matrices are available 

through ODS Graphics.
 The ID statement enables you to specify additional 

variables to identify observations in scatter plots 
and scatter plot matrices.

1 8  

Exploratory analysis in preparation for multiple regression often involves looking at bivariate scatter plots 
and correlations between each of the predictor variables and the response variable. It is not suggested that 
exclusion or inclusion decisions be made on the basis of these analyses. The purpose is to explore the 
shape of the relationships (because linear regression assumes a linear shape to the relationship) and to 
screen for outliers. You also want to check for multivariate outliers when you test your multiple 
regression models later. 

PROC CORR provides bivariate correlation tables. These tables are accompanied by ODS Statistical 
Graphics. An ID statement in the procedure helps identify outliers in the plots. 
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PROC CORR PLOTS OPTION: Syntax and 
Selected Sub-Options
 PLOTS <(ONLY)> <= (plot-request < plot-request >) > 

– ALL
– MATRIX <( matrix-options )> 
– SCATTER <( scatter-options )> 
– HIST | HISTOGRAM
– NVAR=ALL | n
– ELLIPSE=PREDICTION | CONFIDENCE | NONE

1 9  

Selected PLOTS= sub-options: 

MATRIX <( matrix-options )> requests a scatter plot matrix for variables. 

SCATTER <( scatter-options )> requests scatter plots for pairs of variables. When a scatter plot or a 
scatter plot matrix is requested, the Pearson correlations are also 
displayed. 

The available matrix-options are as follows: 

HIST | HISTOGRAM displays histograms of variables in the VAR list in the scatter plot 
matrix. 

NVAR=ALL | n specifies the maximum number of variables in the VAR list to be 
displayed in the scatter plot matrix. By default, NVAR=5. 

ELLIPSE= requests prediction ellipses for new observations 
(ELLIPSE=PREDICTION), confidence ellipses for the mean 
(ELLIPSE=CONFIDENCE), or no ellipses (ELLIPSE=NONE) to be 
created in the scatter plots. By default, ELLIPSE=PREDICTION. 
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Fitness Example

2 0

The purpose of the study is to 
determine which factors are 
associated with fitness level.

 

In exercise physiology, an objective measure of aerobic fitness is how efficiently the body can absorb and 
use oxygen (oxygen consumption). Subjects participated in a predetermined exercise run of 1.5 miles. 
Measurements of oxygen consumption as well as several other continuous measurements such as age, 
pulse, and weight were recorded. The researchers are interested in determining whether any of these other 
variables can help predict oxygen consumption. These data are found in Rawlings (1998) but certain 
values of Maximum_Pulse and Run_Pulse were changed for illustration. Name, Gender, and 
Performance were also modified for illustration. 

The sasuser.fitness data set contains the following variables: 

Name name of the member 

Gender gender of the member 

RunTime time to run 1.5 miles (in minutes) 

Age age of the member (in years) 

Weight weight of the member (in kilograms) 

Oxygen_Consumption a measure of the ability to use oxygen in the blood stream 

Run_Pulse pulse rate at the end of the run 

Rest_Pulse resting pulse rate 

Maximum_Pulse maximum pulse rate during the run 

Performance a measure of overall fitness 
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Data Exploration, Correlations, and Scatter Plots 

 

Examine the relationships between Oxygen_Consumption and the continuous predictor variables in the 
data set. Use the CORR procedure. 
/*st103d01.sas*/  /*Part A*/ 
ods graphics / reset=all imagemap; 
proc corr data=sasuser.fitness rank 
          plots(only)=scatter(nvar=all ellipse=none); 
   var RunTime Age Weight Run_Pulse 
       Rest_Pulse Maximum_Pulse Performance; 
   with Oxygen_Consumption; 
   id name; 
   title "Correlations and Scatter Plots with Oxygen_Consumption"; 
run; 

 IMAGEMAP=ON in the ODS GRAPHICS statement enables tooltips to be used in HTML 
output. Tooltips are also functional in SAS Report output when you use SAS Enterprise Guide, 
starting with Version 4.3. Tooltips enable the user to identify data points by moving the cursor 
over observations in a plot. In PROC CORR, the variables used in the tooltips are the X axis and 
Y axis variables, the observation number, and any variable in the ID statement. 

Selected PROC CORR statement options: 

RANK orders the correlations from highest to lowest in absolute value. 

PLOTS creates scatter plots and scatter plot matrices using ODS GRAPHICS. 

Selected PROC CORR statement: 

ID when used in HTML output with IMAGEMAP, adds the listed variables to the 
information available with tooltips. 

Suboptions for the PLOTS option: 

SCATTER generates scatter plots for pairs of variables. 

Suboptions for the SCATTER sub-option: 

NVAR=<k> specifies the maximum number of variables in the VAR list to be displayed in the 
matrix plot. If NVAR=ALL is specified, then all variables in the VAR list (up to a 
limit of 10) are displayed. 

ELLIPSE=NONE suppresses the drawing of confidence ellipses on scatter plots. 

The tabular output from PROC CORR is shown below. By default, the analysis generates a table of 
univariate statistics for the analysis variables and then a table of correlations and p-values. 
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PROC CORR Output 
1 With Variables: Oxygen_Consumption 
7 Variables: RunTime    Age   Weight    Run_Pulse    Rest_Pulse    Maximum_Pulse    Performance 

 
Simple Statistics 

Variable N Mean Std Dev Sum Minimum Maximum 
Oxygen_Consumption 31 47.37581 5.32777 1469 37.39000 60.06000 
RunTime 31 10.58613 1.38741 328.17000 8.17000 14.03000 
Age 31 47.67742 5.26236 1478 38.00000 57.00000 
Weight 31 77.44452 8.32857 2401 59.08000 91.63000 
Run_Pulse 31 169.64516 10.25199 5259 146.00000 186.00000 
Rest_Pulse 31 53.45161 7.61944 1657 40.00000 70.00000 
Maximum_Pulse 31 173.77419 9.16410 5387 155.00000 192.00000 
Performance 31 56.64516 18.32584 1756 20.00000 94.00000 

 
Pearson Correlation Coefficients, N = 31 

Prob > |r| under H0: Rho=0 
Oxygen_Consumption RunTime 

-0.86219 
<.0001 

Performance 
0.77890 
<.0001 

Rest_Pulse 
-0.39935 

0.0260 

Run_Pulse 
-0.39808 

0.0266 

Age 
-0.31162 

0.0879 

Maximum_Pulse 
-0.23677 

0.1997 

Weight 
-0.16289 

0.3813 

The correlation coefficient between Oxygen_Consumption and RunTime is -0.86219. The p-value is 
small, which indicates that the population correlation coefficient (Rho) is likely different from 0. The 
second largest correlation coefficient, in absolute value, is Performance, at 0.77890. 
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Scatter plots associated with these correlations are shown below. 
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If you want to explore an observation further, you can move the cursor over the observation and 
information is displayed in a floating box. You can only do this in an HTML file with IMAGEMAP 
turned on. The coordinate values, observation number, and ID variable values are displayed. 
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The correlation and scatter plot analyses indicate that several variables might be good predictors for 
Oxygen_Consumption. 

When you prepare to conduct a regression analysis, it is always good practice to examine the correlations 
among the potential predictor variables. PROC CORR can be used to generate a matrix of correlation 
coefficients.  To ensure that the imagemap feature used in the previous demonstration is deactivated, we 
will include a RESET=ALL option in the ODS statement. 
/*st103d01.sas*/  /*Part B*/ 
ods graphics / reset=all; 
proc corr data=sasuser.fitness nosimple 
          plots=matrix(nvar=all histogram); 
   var RunTime Age Weight Run_Pulse 
       Rest_Pulse Maximum_Pulse Performance; 
   title "Correlations and Scatter Plot Matrix of Fitness Predictors"; 
run; 

Selected PROC CORR statement option: 

NOSIMPLE suppresses printing simple descriptive statistics for each variable. 
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PROC CORR Output 
7  Variables: RunTime       Age           Weight        Run_Pulse     Rest_Pulse    Maximum_Pulse Performance 

 
Pearson Correlation Coefficients, N = 31 

Prob > |r| under H0: Rho=0 
 RunTime Age Weight Run_Pulse Rest_Pulse Maximum_Pulse Performance 

RunTime 1.00000 
 

0.19523 
0.2926 

0.14351 
0.4412 

0.31365 
0.0858 

0.45038 
0.0110 

0.22610 
0.2213 

-0.82049 
<.0001 

Age 0.19523 
0.2926 

1.00000 
 
-0.24050 

0.1925 
-0.31607 

0.0832 
-0.15087 

0.4178 
-0.41490 

0.0203 
-0.71257 

<.0001 
Weight 0.14351 

0.4412 
-0.24050 

0.1925 
1.00000 

 
0.18152 

0.3284 
0.04397 

0.8143 
0.24938 

0.1761 
0.08974 

0.6312 
Run_Pulse 0.31365 

0.0858 
-0.31607 

0.0832 
0.18152 

0.3284 
1.00000 

 
0.35246 

0.0518 
0.92975 
<.0001 

-0.02943 
0.8751 

Rest_Pulse 0.45038 
0.0110 

-0.15087 
0.4178 

0.04397 
0.8143 

0.35246 
0.0518 

1.00000 
 

0.30512 
0.0951 

-0.22560 
0.2224 

Maximum_Pulse 0.22610 
0.2213 

-0.41490 
0.0203 

0.24938 
0.1761 

0.92975 
<.0001 

0.30512 
0.0951 

1.00000 
 

0.09002 
0.6301 

Performance -0.82049 
<.0001 

-0.71257 
<.0001 

0.08974 
0.6312 

-0.02943 
0.8751 

-0.22560 
0.2224 

0.09002 
0.6301 

1.00000 
 

There are strong correlations between Run_Pulse and Maximum_Pulse (0.92975) and between 
RunTime and Performance (-0.82049). These associations are seen in more detail in the matrix of 
scatter plots. 
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The following correlation table was created from the matrix by choosing small p-values. The table is in 
descending order, based on the absolute value of the correlation. It provides a summary of the correlation 
analysis of the independent variables. 

Row Variable Column Variable Pearson’s r Prob > |r| 

Run_Pulse Maximum_Pulse 0.92975 <.0001 

RunTime Performance -0.82049 <.0001 

Performance Age -0.71257 <.0001 

RunTime Rest_Pulse 0.45038 0.0110 

Age Maximum_Pulse -0.41490 0.0203 

Run_Pulse Rest_Pulse 0.35246 0.0518 
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Exercises 

 

1.   Describing the Relationship between Continuous Variables 

Percentage of body fat, age, weight, height, and 10 body circumference measurements (for example, 
abdomen) were recorded for 252 men by Dr. Roger W. Johnson of Calvin College in Minnesota. The 
data are in the sasuser.BodyFat2 data set. Body fat, one measure of health, was accurately estimated 
by an underwater weighing technique. There are two measures of percentage body fat in this data set. 
The following variables are in the data set: 

Case Case Number 

PctBodyFat1 Percent body fat using Brozek's equation, 457/Density - 414.2 

PctBodyFat2  Percent body fat using Siri's equation, 495/Density - 450 

Density Density (gm/cm^3) 

Age Age (yrs) 

Weight Weight (lbs) 

Height Height (inches) 

Adioposity Adiposity index=Weight/Height^2 (kg/m^2) 

FatFreeWt Fat Free Weight=(1-fraction of body fat)*Weight, using Brozek's formula (lbs) 

Neck Neck circumference (cm) 

Chest Chest circumference (cm) 

Abdomen Abdomen circumference (cm) "at the umbilicus and level with the iliac crest" 

Hip Hip circumference (cm) 

Thigh Thigh circumference (cm) 

Knee Knee circumference (cm) 

Ankle Ankle circumference (cm) 

Biceps Extended biceps circumference (cm) 

Forearm Forearm circumference (cm) 

Wrist Wrist circumference (cm) "distal to the styloid processes"  
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a.   Generate scatter plots and correlations for the VAR variables Age, Weight, Height, and the 
circumference measures versus the WITH variable, PctBodyFat2. 

 Important! ODS Graphics in PROC CORR limits you to 10 VAR variables at a time, so 
for this exercise, look at the relationships with Age, Weight, and Height separately from 
the circumference variables (Neck Chest Abdomen Hip Thigh Knee Ankle Biceps 
Forearm Wrist). 

 This limitation exists only on the graphics obtained from ODS. The correlation table will 
display all variables in the VAR statement by default. 

1)   Can straight lines adequately describe the relationships? 

2)   Are there any outliers that you should investigate? 

3)   What variable has the highest correlation with PctBodyFat2? 

a)   What is the p-value for the coefficient? 

b)   Is the correlation statistically significant at the 0.05 level? 

b.   Generate correlations among all of the variables in the previously mentioned variables minus 
PctBodyFat2. Are there any notable relationships? 

25

3.01 Multiple Choice Poll
The correlation between tuition and rate of graduation 
at U.S. colleges is 0.55. What does this mean?
a. The way to increase graduation rates at your college 

is to raise tuition.
b. Increasing graduation rates is expensive, causing 

tuition to rise.
c. Students who are richer tend to graduate more often 

than poorer students.
d. None of the above.

2 5  



 3.2  Simple Linear Regression 3-29 

Copyright © 2012, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. 

3.2 Simple Linear Regression 

28

Objectives
 Explain the concepts of simple linear regression.
 Fit a simple linear regression using the REG 

procedure.
 Produce predicted values and confidence intervals.

2 8  

29

Overview

2 9  

In the last section, you used correlation analysis to quantify the linear relationships between continuous 
response variables. Two pairs of variables can have the same correlation, but very different linear 
relationships. In this section, you use simple linear regression to define the linear relationship between a 
response variable and a predictor variable. 
• The response variable is the variable of primary interest. 
• The predictor variable is used to explain the variability in the response variable. 
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Simple Linear Regression Analysis
The objectives of simple linear regression are as follows:
 assess the significance of the predictor variable 

in explaining the variability or behavior of the response 
variable

 predict the values of the response variable given the 
values of the predictor variable

3 0  

In simple linear regression, the values of the predictor variable are assumed to be fixed. Thus, you try to 
explain the variability of the response variable given the values of the predictor variable. 

31

Fitness Example

3 1

PREDICTOR RESPONSE
RunTime Oxygen_Consumption

 

The analyst noted that the running time measure has the highest correlation with the oxygen consumption 
capacity of the club members. Consequently, she wants to further explore the relationship between 
Oxygen_Consumption and RunTime. 

She decides to run a simple linear regression of Oxygen_Consumption versus RunTime. 
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Simple Linear Regression Model

3 2

β0

1 unit

β1 units

 

The relationship between the response variable and the predictor variable can be characterized by the 
equation yi=β0+β1xi+ei, i=1, …, n 

where 

yi is the response variable. 

xi is the predictor variable. 

β0 is the intercept parameter, which corresponds to the value of the response variable when the 
predictor is 0. 

β1 is the slope parameter, which corresponds to the magnitude of change in the response variable 
given a one unit change in the predictor variable. 

eI is the error term representing deviations of yi about β0 + β1xi. 
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Simple Linear Regression Model

3 3

Y=β0+β1X
Regression 
Best Fit Line

Unknown 
Relationship
Y=β0+β1X
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^ ^ ^

 

Because your goal in simple linear regression is usually to characterize the relationship between the 
response and predictor variables in your population, you begin with a sample of data. From this sample, 
you estimate the unknown population parameters (β0, β1) that define the assumed relationship between 
your response and predictor variables. 

Estimates of the unknown population parameters β0 and β1 are obtained by the method of least squares. 
This method provides the estimates by determining the line that minimizes the sum of the squared vertical 
distances between the observations and the fitted line. In other words, the fitted or regression line is as 
close as possible to all the data points. 

The method of least squares produces parameter estimates with certain optimum properties. If the 
assumptions of simple linear regression are valid, the least squares estimates are unbiased estimates of the 
population parameters and have minimum variance (efficiency). The least squares estimators are often 
called BLUE (Best Linear Unbiased Estimators). The term best is used because of the minimum variance 
property. 

Because of these optimum properties, the method of least squares is used by many data analysts to 
investigate the relationship between continuous predictor and response variables. 

With a large and representative sample, the fitted regression line should be a good approximation of the 
relationship between the response and predictor variables in the population. The estimated parameters 
obtained using the method of least squares should be good approximations of the true population 
parameters. 
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The Baseline Model

3 4

Ȳ

 

To determine whether the predictor variable explains a significant amount of variability in the response 
variable, the simple linear regression model is compared to the baseline model. The fitted regression line 
in a baseline model is a horizontal line across all values of the predictor variable. The slope of the 
regression line is 0 and the intercept is the sample mean of the response variable, (Y ). 

In a baseline model, there is no association between the response variable and the predictor variable. 
Therefore, knowing the value of the predictor variable does not improve predictions of the response over 
simply using the unconditional mean (the mean calculated disregarding the predictor variables) of the 
response variable. 
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Explained versus Unexplained Variability

3 5

Ȳ

Y=β0+β1X

*

Total

Explained

Unexplained

^^ ^

 

To determine whether a simple linear regression model is better than the baseline model, compare the 
explained variability to the unexplained variability. 

Explained variability is related to the difference between the regression line and the mean of the 
response variable. The model sum of squares (SSM) is the amount of variability 
explained by your model. The model sum of squares is equal to ( )2ˆ YYi −∑ . 

Unexplained variability is related to the difference between the observed values and the regression line. 
The error sum of squares (SSE) is the amount of variability unexplained by your 

model. The error sum of squares is equal to ( )2îi YY −∑ . 

Total variability is related to the difference between the observed values and the mean of the 
response variable. The corrected total sum of squares is the sum of the explained 
and unexplained variability. The corrected total sum of squares is equal to 
( )2YYi −∑ . 

 Remember that the relationship of the following: total=unexplained+explained applies for sums 
of squares over all observations and not necessarily for any individual observation. 
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Model Hypothesis Test
Null Hypothesis:
 The simple linear regression model does not fit 

the data better than the baseline model.
 β1=0

Alternative Hypothesis:
 The simple linear regression model does fit the 

data better than the baseline model. 
 β1≠0

3 6  

If the estimated simple linear regression model does not fit the data better than the baseline model, you 
fail to reject the null hypothesis. Thus, you do not have enough evidence to say that the slope of the 
regression line in the population differs from zero. 

If the estimated simple linear regression model does fit the data better than the baseline model, you reject 
the null hypothesis. Thus, you do have enough evidence to say that the slope of the regression line in the 
population differs from zero and that the predictor variable explains a significant amount of variability in 
the response variable. 
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Assumptions of Simple Linear Regression

3 7

Unknown 
Relationship
Y=β0+β1X

 

One of the assumptions of simple linear regression is that the mean of the response variable is linearly 
related to the value of the predictor variable. In other words, a straight line connects the means of the 
response variable at each value of the predictor variable. 

The other assumptions are the same as the assumptions for ANOVA, that is, the error is normally 
distributed and has constant variance across the range of the predictor variable, and observations are 
independent. 

 The verification of these assumptions is discussed in a later chapter. 
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The REG Procedure
General form of the REG procedure:

3 8

PROC REG DATA=SAS-data-set <options>;
MODEL dependent(s)=regressor(s) </ options>;

RUN;
QUIT;

 

The REG procedure enables you to fit regression models to your data. 

Selected REG procedure statement: 

MODEL specifies the response and predictor variables. The variables must be numeric. 

 PROC REG supports RUN-group processing, which means that the procedure stays active until a 
PROC, DATA, or QUIT statement is encountered. This enables you to submit additional 
statements followed by another RUN statement without resubmitting the PROC statement. 
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Performing Simple Linear Regression 

 
Example: Because there is an apparent linear relationship between Oxygen_Consumption and 

RunTime, perform a simple linear regression analysis with Oxygen_Consumption as the 
response variable. 

/*st103d02.sas*/ 
proc reg data=sasuser.fitness; 
   model Oxygen_Consumption=RunTime; 
   title 'Predicting Oxygen_Consumption from RunTime'; 
run; 
quit; 

PROC REG Output 
Number of Observations Read 31 
Number of Observations Used 31 

The Number of Observations Read and the Number of Observations Used are the same, which indicates 
that no missing values were detected for Oxygen_Consumption and RunTime. 

Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 
Model 1 633.01458 633.01458 84.00 <.0001 
Error 29 218.53997 7.53586   
Corrected Total 30 851.55455    

The Analysis of Variance (ANOVA) table provides an analysis of the variability observed in the data and 
the variability explained by the regression line. 

The ANOVA table for simple linear regression is divided into six columns: 

Source labels the source of variability. 

DF is the degrees of freedom associated with each source of variability. 

Sum of Squares is the amount of variability associated with each source of variability. 

Mean Square is the ratio of the sum of squares and the degrees of freedom. This value corresponds 
to the amount of variability associated with each degree of freedom for each source of 
variation. 

F Value is the ratio of the mean square for the model and the mean square for the error. This 
ratio compares the variability explained by the regression line to the variability 
unexplained by the regression line. 

Pr>F is the p-value associated with the F value. 
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Each of the column measurements are applied to the following sources of variation: 

Model is the variability explained by your model (Between Group). 

Error is the variability unexplained by your model (Within Group). 

Corrected Total is the total variability in the data (Total). 

The F value tests whether the slope of the predictor variable is equal to 0. The p-value is small (less than 
0.05), so you have enough evidence at the 0.05 significance level to reject the null hypothesis. Thus, you 
can conclude that the simple linear regression model fits the data better than the baseline model. In other 
words, RunTime explains a significant amount of variability of Oxygen_Consumption. 

The third part of the output provides summary measures of fit for the model. 
Root MSE 2.74515 R Square 0.7434 
Dependent Mean 47.37581 Adj R Sq 0.7345 
Coeff Var 5.79442   

Root MSE The root mean square error is an estimate of the standard deviation of the response 
variable at each value of the predictor variable. It is the square root of the MSE. 

Dependent Mean The overall mean of the response variable is Y . 

Coeff Var The coefficient of variation is the size of the standard deviation relative to the mean. 
The coefficient of variation is 

• calculated as 100
Y
MSERoot *






  

• a unitless measure, so it can be used to compare data that has different units of 
measurement or different magnitudes of measurement. 

R Square The coefficient of determination is also referred to as the R-square value. This value is 
• between 0 and 1. 
• the proportion of variability observed in the data explained by the regression line.  

In this example, the value is 0.7434, which means that the regression line explains 
74% of the total variation in the response values. 

• the square of the multiple correlation between Y and the Xs. 

 The R square is the squared value of the correlation that you saw earlier between 
RunTime and Oxygen_Consumption (0.86219). This is no coincidence. For simple 
regression, the R-square value is the square of the value of the bivariate Pearson 
correlation coefficient. 

Adj R Sq The adjusted R square is adjusted for the number of parameters in the model. This 
statistic is useful in multiple regression and is discussed in a later section. 
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The Parameter Estimates table defines the model for your data. 
Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 
Intercept 1 82.42494 3.85582 21.38 <.0001 
RunTime 1 -3.31085 0.36124 -9.17 <.0001 

DF represents the degrees of freedom associated with each term in the model. 

Parameter Estimate is the estimated value of the parameters associated with each term in the model. 

Standard Error is the standard error of each parameter estimate. 

t Value is the t statistic, which is calculated by dividing the parameter estimates by their 
corresponding standard error estimates. 

Pr > |t| is the p-value associated with the t statistic. It tests whether the parameter 
associated with each term in the model is different from 0. For this example, the 
slope for the predictor variable is statistically different from 0. Thus, you can 
conclude that the predictor variable explains a significant portion of variability in 
the response variable. 

Because the estimate of βo=82.42494 and β1=−3.31085, the estimated regression equation is given by 
Oxygen_Consumption=82.42494−3.31085*(RunTime). 

The model indicates that a one-unit greater value for RunTime is associated with a 3.31085 lower value 
for Oxygen_Consumption. However, extrapolation of the model beyond the range of your predictor 
variables is inappropriate. You cannot assume that the relationship maintains in areas that were not 
sampled from. 

The parameter estimates table also shows that the intercept parameter is not equal to 0. However, the test 
for the intercept parameter only has practical significance when the range of values for the predictor 
variable includes 0. In this example, the test could not have practical significance because RunTime=0 
(running at the speed of light) is not inside the range of observed values. 
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The diagnostics table and the residuals by RunTime table show a variety of plots designed to help with 
an assessment of the data’s fulfillment of statistical assumptions and influential outliers. These plots are 
explored in detail in a later chapter. 
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The Fit plot produced by ODS Graphics shows the predicted regression line superimposed over a scatter 
plot of the data. 

To assess the level of precision around the mean estimates of Oxygen_Consumption, you can produce 
confidence intervals around the means. This is represented in the shaded area in the plot. 
• A 95% confidence interval for the mean says that you are 95% confident that your interval contains the 

population mean of Y for a particular X. 
• Confidence intervals become wider as you move away from the mean of the independent variable. This 

reflects the fact that your estimates become more variable as you move away from the means of X and 
Y. 

Suppose that the mean Oxygen_Consumption at a fixed value of RunTime is not the focus. If you are 
interested in establishing an inference on a future single observation, you need a prediction interval 
around the individual observations. This is represented by the area between the broken lines in the plot. 
• A 95% prediction interval is one that you are 95% confident contains a new observation. 
• Prediction intervals are wider than confidence intervals because single observations have more 

variability than sample means. 

 Printed tables for the confidence and prediction intervals at each observed data point can be 
obtained by adding the CLM and CLI options to the MODEL statement. 
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3.02 Multiple Choice Poll
Run PROC REG with this MODEL statement: 
model y=x1;. If the parameter estimate (slope) of x1 is 
0, then the best guess (predicted value) of y when x1=13 
is which of the following?
a. 13
b. the mean of y
c. a random number
d. the mean of x1
e. 0

4 1  
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Producing Predicted Values
What is the predicted value for Oxygen_Consumption 
when RunTime is 9, 10, 11, 12, or 13 minutes?

4 3

Y=β0+β1X
^ ^ ^

 

One objective in regression analysis is to predict values of the response variable given values of the 
predictor variables. You can obviously use the estimated regression equation to produce predicted values, 
but if you want a large number of predictions, this can be cumbersome. 

To produce predicted values in PROC REG, follow these steps: 

1. Create a data set with the values of the independent variable for which you want to make predictions. 

2. Concatenate the data in the step above with the original data set. 

3. Fit a simple linear regression model to the new data set and specify the P option in the MODEL 
statement. Because the observations added in the previous step contain missing values for the 
response variable, PROC REG does not include these observations when fitting the regression model. 
However, PROC REG does produce predicted values for these observations. 
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The SCORE Procedure
General form of the SCORE procedure:

4 4

PROC SCORE DATA=SAS-data-set
<SCORE=SAS-data-set>        
<OUT=SAS-data-set> 
<other options>;

VAR variables;
RUN;

 

The SCORE procedure multiplies values from two SAS data sets, one containing coefficients (for 
example, factor-scoring coefficients or regression coefficients) and the other containing raw data to be 
scored using the coefficients from the first data set. The result of this multiplication is a SAS data set that 
contains linear combinations of the coefficients and the raw data values. 

Many statistical procedures output coefficients that PROC SCORE can apply to raw data to produce 
scores. The new score variable is formed as a linear combination of raw data and scoring coefficients. For 
each observation in the raw data set, PROC SCORE multiplies the value of a variable in the raw data set 
by the matching scoring coefficient from the data set of scoring coefficients. This multiplication process is 
repeated for each variable in the VAR statement. The resulting products are then summed to produce the 
value of the new score variable. This entire process is repeated for each observation in the raw data set. In 
other words, PROC SCORE cross multiplies part of one data set with another. 
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Producing Predicted Values 

 

Example: Produce predicted values of Oxygen_Consumption when RunTime is 9, 10, 11, 12, or 13. 

Produce predicted values by outputting the parameter estimates from PROC REG into a data set and then 
scoring the new observations in PROC SCORE. Here is an example program to create the data set 
containing the observations to be scored. 
/*st103d03.sas*/  
data Need_Predictions; 
   input RunTime @@; 
   datalines; 
9 10 11 12 13 
; 
run; 

The regression model is submitted, as usual, but with an OUTEST= option for scoring (predicting the 
values of) new observations. 

The MODEL statement below is preceded by an alphanumeric string followed by a colon (:). This string 
is the label of the model and is used as the name of the variable containing the predictions from a 
subsequent run of PROC SCORE. 

 The default model label is MODELn, where n is the ordered value of the nth MODEL statement in 
one run of PROC REG.  That label is eventually used by PROC SCORE to name the variable that 
contains predicted values for the raw data set (the one to be scored). 

proc reg data=sasuser.fitness noprint outest=Betas; 
   PredOxy: model Oxygen_Consumption=RunTime; 
run; 
quit; 
 
proc print data=Betas; 
   title "OUTEST= Data Set from PROC REG"; 
run; 

Selected PROC REG statement option: 

OUTEST= outputs parameter estimates and model information to a SAS data set. 

 
Obs _MODEL_ _TYPE_ _DEPVAR_ _RMSE_ Intercept RunTime Oxygen_Consumption 

1 PredOxy PARMS Oxygen_Consumption 2.74515 82.4249 -3.31085 -1 

 

Notice the variable _TYPE_; its value of that variable is important when you run PROC SCORE. 

In the second part of this example, PROC SCORE is used to score a new data set, Need_Predictions. For 
PROC SCORE, the TYPE= specification is PARMS, and the names of the score variables are found in the 
variable _MODEL_, which gets its values from the model label. 
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proc score data=Need_Predictions score=Betas 
           out=Scored type=parms; 
   var RunTime; 
run; 
 
proc print data=Scored; 
   title "Scored New Observations"; 
run; 

Selected PROC SCORE statement options: 

DATA= names the data set with the observations to be scored.  

SCORE= names the data set with parameter estimates.  

OUT= names the data set to which scored observations are to be written. 

TYPE= tells PROC SCORE what type of data the SCORE= data set contains.  
Obs RunTime PredOxy 

1 9 52.6272 
2 10 49.3164 
3 11 46.0055 
4 12 42.6947 
5 13 39.3838 

The predicted value for Oxygen_Consumption when RunTime is 9 is 52.6272. 

 Choose only values within or near the range of the predictor variable when you are predicting 
new values for the response variable. For this example, the values of the variable RunTime range 
from 8.17 to 14.03 minutes. Therefore, it is unwise to predict the value of Oxygen_Consumption 
for a RunTime of 18. The reason is that the relationship between the predictor variable and the 
response variable might be different beyond the range of your data. 
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Obtaining Predicted Values Using the P Option in the 
MODEL Statement (Self-Study) 

If the data set used to produce the model is small, then that data set can be concatenated with the data set 
containing the data to be scored. You can then use the P option in the MODEL statement to produce 
predicted values. 
/*st103d03.sas*/  /*Self Study*/  
data Need_Predictions; 
   input RunTime @@; 
   datalines; 
9 10 11 12 13 
; 
run; 
 
data Predict; 
   set Need_Predictions 
       sasuser.fitness; 
run; 
 
ods graphics off; 
 
proc reg data=Predict; 
   model Oxygen_Consumption=RunTime / p; 
   id RunTime; 
   title 'Oxygen_Consumption=RunTime with Predicted Values'; 
run; 
quit; 

Selected REG procedure statement: 

ID specifies a variable to label observations in the output produced by certain MODEL statement 
options. 

Selected MODEL statement option: 

P prints the values of the response variable, the predicted values, and the residual values. 

PROC REG Output 
Number of Observations Read 36 
Number of Observations Used 31 
Number of Observations with Missing Values 5 

Notice that 36 observations were read; 31 were used and 5 had missing values. The observations in 
Need_Predictions had missing values for Oxygen_Consumption, so they were eliminated from the 
analysis. 
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Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 
Model 1 633.01458 633.01458 84.00 <.0001 
Error 29 218.53997 7.53586   
Corrected Total 30 851.55455    

 
Root MSE 2.74515 R-Square 0.7434 
Dependent Mean 47.37581 Adj R-Sq 0.7345 
Coeff Var 5.79442   

 
Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 
Intercept 1 82.42494 3.85582 21.38 <.0001 
RunTime 1 -3.31085 0.36124 -9.17 <.0001 

The model output is not affected by the extra five observations, because they were not used in any 
calculations, due to missing values. 

Partial Output 
Output Statistics 

Obs RunTime 
Dependent 

Variable 
Predicted 

Value Residual 
1 9.00 . 52.6272 . 
2 10.00 . 49.3164 . 
3 11.00 . 46.0055 . 
4 12.00 . 42.6947 . 
5 13.00 . 39.3838 . 
6 8.17 59.5700 55.3753 4.1947 
7 8.63 60.0600 53.8523 6.2077 
8 8.65 54.3000 53.7860 0.5140 
9 8.92 54.6300 52.8921 1.7379 

10 8.95 49.1600 52.7928 -3.6328 

Because you specified RunTime in the ID statement, the values of this variable appear in the first column 
after Obs. 

The output shows that the estimated value of Oxygen_Consumption is 52.6272 when RunTime equals 
9. This is identical to the value produced in PROC SCORE. 
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Exercises 

 

2.   Fitting a Simple Linear Regression Model 

Use the sasuser.BodyFat2 data set for this exercise. 

a.   Perform a simple linear regression model with PctBodyFat2 as the response variable and Weight 
as the predictor. 

1)   What is the value of the F statistic and the associated p-value? How would you interpret this 
with regard to the null hypothesis? 

2)   Write the predicted regression equation. 

3)   What is the value of the R-square statistic? How would you interpret this? 

b.   Produce predicted values for PctBodyFat2 when Weight is 125, 150, 175, 200, and 225. 

What are the predicted values? 

50

3.03 Multiple Choice Poll
What is the predicted value for PctBodyFat2 when 
Weight is 150?

a. 0.17439
b. 150
c. 14.1067 

5 0  
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3.3 Concepts of Multiple Regression 

53

Objectives
 Explain the mathematical model for multiple 

regression.
 Describe the main advantage of multiple regression 

versus simple linear regression.
 Explain the standard output from the REG procedure.
 Describe common pitfalls of multiple linear regression.

5 3  

54

Multiple Linear Regression with Two Variables
Consider the two-variable model

Y=β0+β1X1+β2X2+e

where

Y is the dependent variable.
X1 and X2 are the independent or predictor 

variables.
e is the error term.
β0, β1, and β2 are unknown parameters.

5 4  

In simple linear regression, you can model the relationship between the two variables (two dimensions) 
with a line (one dimension). 

For the two-variable model, you can model the relationship of three variables (three dimensions) with a 
plane (two dimensions). 
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Picturing the Model: No Relationship

5 5

***
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If there is no relationship among Y and X1 and X2, the model is a horizontal plane passing through the 
point (Y=β0, X1=0, X2=0). 
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Picturing the Model: A Relationship

5 6
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If there is a relationship among Y and X1 and X2, the model is a sloping plane passing through three 
points: 
• (Y=β0, X1=0, X2=0) 
• (Y=β0+β1, X1=1, X2=0) 
• (Y=β0+β2, X1=0, X2=1) 
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The Multiple Linear Regression Model
In general, you model the dependent variable, Y, as a 
linear function of k independent variables, X1 through Xk:

Y=β0+β1X1+...+βkXk+e

5 7

Linear? Nonlinear?

Y=β0+β1X1+β2X2+e Y=β0+β1X1+β2X1
2+β3X2+β4X2

2+e

 

You investigate the relationship among k+1 variables (k predictors+1 response) using a k-dimensional 
surface for prediction. 

The multiple general linear model is not restricted to modeling only planar relationships. By using higher 
order terms, such as quadratic or cubic powers of the Xs or cross products of one X with another, surfaces 
more complex than planes can be modeled. 

In the examples, the models are limited to relatively simple surfaces. 

 The model has p=k+1 parameters (the βs), including the intercept, β0. 
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Multiple Regression Example

6 7

PREDICTORS RESPONSE
Performance

RunTime

Age

Weight

Run_Pulse

Rest_Pulse

Maximum_Pulse

Oxygen_Consumption

 

58

Model Hypothesis Test
Null Hypothesis:
 The regression model does not fit the data better than 

the baseline model.
 β1=β2=…=βk=0

Alternative Hypothesis:
 The regression model does fit the data better than 

the baseline model.
 Not all βis equal zero.

5 8  

If the estimated linear regression model does not fit the data better than the baseline model, you fail to 
reject the null hypothesis. Thus, you do not have enough evidence to say that all of the slopes of the 
regression in the population differ from zero. The predictor variables do not explain a significant amount 
of variability in the response variable. 

If the estimated linear regression model does fit the data better than the baseline model, you reject the null 
hypothesis. Thus, you do have enough evidence to say that at least one slope of the regression in the 
population differs from zero. At least one predictor variable explains a significant amount of variability in 
the response variable. 
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3.04 Multiple Choice Poll
Which statistic in the ANOVA table is used to test the 
overall model hypotheses?
a. F
b. t
c. R square
d. Adjusted R square

6 0  

62

Assumptions for Linear Regression
 The mean of the Ys is accurately modeled by a linear 

function of the Xs.
 The random error term, e, is assumed to have 

a normal distribution with a mean of zero.
 The random error term, e, is assumed to have 

a constant variance, s2. 
 The errors are independent.

6 2  

Techniques to evaluate the validity of these assumptions are discussed in a later chapter. 
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Multiple Linear Regression versus Simple 
Linear Regression
Main Advantage
Multiple linear regression enables you to investigate 
the relationship among Y and several independent 
variables simultaneously.
Main Disadvantages
Increased complexity makes it more difficult 
to do the following:
 ascertain which model is “best”
 interpret the models

6 3  

The advantage of performing multiple linear regression over a series of simple linear regression models 
far outweighs the disadvantages. In practice, many responses depend on multiple factors that might 
interact in some way. 

SAS tools help you decide upon a “best” model, a choice that might depend on the purposes of the 
analysis, as well as subject-matter expertise. 
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Common Applications
Multiple linear regression is a powerful tool for 
the following tasks:
 Prediction – to develop a model to predict future 

values of a response variable (Y) based on its 
relationships with other predictor variables (Xs)

 Analytical or Explanatory Analysis – to develop 
an understanding of the relationships between 
the response variable and predictor variables

6 4  

Even though multiple linear regression enables you to analyze many experimental designs, ranging from 
simple to complex, you focus on applications for analytical studies and predictive modeling. Other SAS 
procedures, such as GLM, are better suited for analyzing experimental data. 

The distinction between using multiple regression for an analytic analysis and prediction modeling is 
somewhat artificial. A model developed for prediction is probably a good analytic model. Conversely, a 
model developed for an analytic study is probably a good prediction model. 

Myers (1999) refers to four applications of regression: 
• prediction 
• variable screening 
• model specifications 
• parameter estimation 

The term analytical analysis is similar to Myers’ parameter estimation application and variable screening. 
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65

Prediction
 The terms in the model, the values of their coefficients, 

and their statistical significance are of secondary 
importance.

 The focus is on producing a model that is the best at 
predicting future values of Y as a function of the Xs. 
The predicted value of Y is given by this formula:

6 5

kk XXY βββ ˆˆˆˆ
110 +++= 

 

Most investigators whose main goal is prediction do not ignore the terms in the model (the Xs), the values 
of their coefficients (the βs), or their statistical significance (the p-values). They use these statistics to 
help choose among models with different numbers of terms and predictive capabilities. 

66

Analytical or Explanatory Analysis
 The focus is on understanding the relationship 

between the dependent variable and the independent 
variables.

 Consequently, the statistical significance of the 
coefficients is important as well as the magnitudes 
and signs of the coefficients.

kk XXY βββ ˆˆˆˆ
110 +++= 
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Multiple Regression Example

6 7

PREDICTORS RESPONSE
Performance

RunTime

Age

Weight

Run_Pulse

Rest_Pulse

Maximum_Pulse

Oxygen_Consumption

 

An analyst knows from doing a simple linear regression that the measure of performance is an important 
variable in explaining the oxygen consumption capability of a club member. 

The analyst is interested in investigating other information to ascertain whether other variables are 
important in explaining the oxygen consumption capability. 

Recall that you did a simple linear regression on Oxygen_Consumption with RunTime as the predictor 
variable. 

The R square for this model was 0.7434, which suggests that 25.64% of the variation in 
Oxygen_Consumption is still unexplained. 

Consequently, adding other variables to the model, such as Performance or Age, might provide a 
significantly better model. 
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Adjusted R Square

6 8
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The R square always increases or stays the same as you include more terms in the model. Therefore, 
choosing the “best” model is not as simple as just making the R square as large as possible. 

The adjusted R square is a measure similar to R square, but it takes into account the number of terms in 
the model. It can be thought of as a penalized version of R square with the penalty increasing with each 
parameter added to the model. 
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Fitting a Multiple Linear Regression Model 

 

Example: Invoke PROC REG and perform a multiple linear regression analysis of 
Oxygen_Consumption on Performance and RunTime. Interpret the output for the two-
variable model. 

/*st103d04.sas*/ 
ods graphics off; 
proc reg data=sasuser.fitness; 
   model Oxygen_Consumption=Performance RunTime; 
   title 'Multiple Linear Regression for Fitness Data'; 
run; 
quit; 
ods graphics on; 

The only required statement for PROC REG is the MODEL statement. 

General form of the MODEL statement: 

MODEL Y=X1 X2 … Xk; 

where 

Y is the dependent variable. 

X1 X2 … Xk  
is a list of the independent variables that are included in the model. 

Number of Observations Read 31 
Number of Observations Used 31 

 
Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 
Model 2 646.33101 323.16550 44.09 <.0001 
Error 28 205.22355 7.32941   
Corrected Total 30 851.55455    
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PROC REG Output 

Model DF is 2, the number of parameters minus 1. 

Error DF is 28, the total numbers of observations (31) minus the number of parameters in 
the model (3). 

Corrected Total DF is 30, the number of observations minus 1. 

Model Sum of Squares is the total variation in the Y explained by the model. 

Error Sum of Squares is the variation in the Y not explained by the model. 

Corrected Total Sum  
of Squares is the total variation in the Y. 

Model Mean Square is the Model Sum of Squares divided by the Model DF – also known as model 
variance. 

Mean Square Error is the Error Sum of Squares divided by the Error DF and is an estimate of s2, the 
variance of the random error term – also known as error variance. 

F Value is the (Mean Square Model)/(Mean Square Error). 

Pr>F is small. Therefore, you reject H0: β1=β2=0 and conclude that at least one βi≠0. 
Root MSE 2.70729 R-Square 0.7590 
Dependent Mean 47.37581 Adj R-Sq 0.7418 
Coeff Var 5.71450   

The R square for this model, 0.7590, is only slightly larger than the R square for the model in which 
RunTime is the only predictor variable, 0.7434. 

The adjusted R square for this model is 0.7418, slightly higher than the adjusted R square of 0.7345 for 
the RunTime only model. This suggests, although mildly, that adding Performance does improve the 
model predicting Oxygen_Consumption. 
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Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 
Intercept 1 71.52626 8.93520 8.00 <.0001 
Performance 1 0.06360 0.04718 1.35 0.1885 
RunTime 1 -2.62163 0.62320 -4.21 0.0002 

Using the estimates for β0, β1, and β2 above, this model can be written as the following: 

Oxygen_Consumption=71.5626+0.06360*Performance−2.62163*RunTime 

The p-value for Performance is large, which suggests that the slope is not significantly different from 0. 
The correlation that you saw between Performance and Oxygen_Consumption was large and 
statistically significant (r=.77890, p<.0001). The test for βi=0 is conditioned on the other terms in the 
model. That is the reason that neither Performance nor RunTime have the same p-values (or parameter 
estimates) when used alone as when used in a model that includes both. The test for β1=0 (for 
Performance) is conditional on (or adjusted for) X2 (RunTime). Similarly, the test for β2=0 is 
conditional on X1 (Performance). 

The significance level of the test does not depend on the order in which you list the independent variables 
in the MODEL statement, but it does depend on the variables included in the MODEL statement. 

In a later section, you look at the difficulties involved with analyzing and selecting the best models due to 
the relationships among predictor variables. 
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Exercises 

 

3.   Performing Multiple Regression Using the REG Procedure 

a.   Using the sasuser.BodyFat2 data set, run a regression of PctBodyFat2 on the variables Age, 
Weight, Height, Neck, Chest, Abdomen, Hip, Thigh, Knee, Ankle, Biceps, Forearm, and 
Wrist. 

1)   Compare the ANOVA table with that from the model with only Weight in the previous 
exercise. What is different? 

2)   How do the R square and the adjusted R square compare with these statistics for the Weight 
regression demonstration? 

3)   Did the estimate for the intercept change? Did the estimate for the coefficient of Weight 
change? 

4.   Simplifying the Model 

a.   Rerun the model in 3a, but eliminate the variable with the highest p-value. Compare the output 
with the Exercise 3a model. 

b.   Did the p-value for the model change notably? 

c.   Did the R square and adjusted R square change notably? 

d.   Did the parameter estimates and their p-values change notably? 

5.   More Simplifying of the Model 

a.   Rerun the model in Exercise 4a, but drop the variable with the highest p-value. 

b.   How did the output change from the previous model? 

c.   Did the number of parameters with a p-value less than 0.05 change? 
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3.05 Multiple Choice Poll
When Oxygen_Consumption is regressed on RunTime, 
Age, Run_Pulse, and Maximum_Pulse, the parameter 
estimate for Age is -2.78. What does this mean?
a. For each year older, the predicted value of oxygen 

consumption is 2.78 greater.
b. For each year older, the predicted value of oxygen 

consumption is 2.78 lower.
c. For every 2.78 years older, oxygen consumption 

doubles.
d. For every 2.78 years younger, oxygen consumption 

doubles.
* Assume that the values of all other predictors are 

held constant.

7 3  
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3.4 Model Building and Interpretation 

76

Objectives
 Explain the REG procedure options for model 

selection.
 Describe model selection options and interpret 

output to evaluate the fit of several models.

7 6  
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Model Selection
Eliminating one variable at a time manually for small 
data sets is a reasonable approach.
However, eliminating one variable at a time manually 
for large data sets can take an extreme amount of time.

7 7  

A process for selecting models might be to start with all the variables in the sasuser.fitness data set and 
eliminate the least significant terms, based on p-values. 

For a small data set, a final model can be developed in a reasonable amount of time. If you start with a 
large model, however, eliminating one variable at a time can take an extreme amount of time. You would 
have to continue this process until only terms with p-values lower than some threshold value, such as 0.05 
or 0.10, remain. 

78

Model Selection Options
The SELECTION= option in the MODEL statement of 
PROC REG supports these model selection techniques:
Stepwise selection methods
 STEPWISE, FORWARD, or BACKWARD

All-possible regressions ranked using
 RSQUARE, ADJRSQ, or CP

SELECTION=NONE is the default.

7 8  
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RSQUARE, ADJRSQ, CP Selection Options

7 9

0
1
2
3
4
5

Variables in
Full Model (k)

1
2
4
8

16
32

Total Number of
Subset Models (2k)

 

In the sasuser.fitness data set, there are seven possible independent variables. Therefore, there are 27=128 
possible regression models. There are seven possible one-variable models, 21 possible two-variable 
models, 35 possible three-variable models, and so on. 

You can choose to only look at the best n (as measured by the model R2 for k=1, 2, 3, …, 7) by using the 
BEST= option on the model statement.  The BEST= option only reduces the output. All regressions are 
still calculated. 

If there were 20 possible independent variables, there would be more than 1,000,000 models. In a later 
demonstration, you see another technique that does not have to examine all the models to help you choose 
a set of candidate models. 
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Mallows’ Cp
 Mallows’ Cp is a simple indicator of effective 

variable selection within a model.
 Look for models with Cp ≤ p, where p equals the 

number of parameters in the model, including the 
intercept.

Mallows recommends choosing the first (fewest 
variables) model where Cp approaches p.

8 0  

Mallows’ Cp (1973) is estimated by 
( )( )

full
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where 

MSEp is the mean squared error for the model with p parameters. 

MSEfull is the mean squared error for the full model used to estimate the true residual variance. 

n is the number of observations. 

p is the number of parameters, including an intercept parameter, if estimated. 

The choice of the best model based on Cp is debatable, as will be shown in the slide about Hocking’s 
criterion. Many choose the model with the smallest Cp value. However, Mallows recommended that the 
best model will have a Cp value approximating p. The most parsimonious model that fits that criterion is 
generally considered to be a good choice, although subject-matter knowledge should also be a guide in 
the selection from among competing models. 
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Hocking's Criterion versus Mallows’ Cp
Hocking (1976) suggests selecting a model based 
on the following:
 Cp ≤ p for prediction
 Cp ≤ 2p − pfull + 1 for parameter estimation

8 1  

Hocking suggested the use of the Cp statistic, but with alternative criteria, depending on the purpose of the 
analysis. His suggestion of (Cp≤2p−pfull+1) is included in the REG procedure’s calculations of criteria 
reference plots for best models. 
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Automated Model Selection 

 

Example: Invoke PROC REG to produce a regression of Oxygen_Consumption on all the other 
variables in the fitness data set. 

/*st103d05.sas*/  /*Part A*/ 
ods graphics / imagemap=on; 
proc reg data=sasuser.fitness plots(only)=(rsquare adjrsq cp); 
   ALL_REG: model oxygen_consumption= 
                      Performance RunTime Age Weight 
                      Run_Pulse Rest_Pulse Maximum_Pulse 
            / selection=rsquare adjrsq cp; 
   title 'Best Models Using All-Regression Option'; 
run; 
quit; 

Selected MODEL statement options: 

SELECTION= enables you to choose the different selection methods – RSQUARE, ADJRSQ, and 
CP. The first listed method is the one that determines the sorting order in the output. 

Selected SELECTION= option methods: 

RSQUARE tells PROC REG to use the model R square to rank the model from best to worst for a 
given number of variables. 

ADJRSQ prints the adjusted R square for each model. 

CP prints Mallows' Cp statistic for each model. 
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Partial HTML Output 
Number of Observations Read 31 
Number of Observations Used 31 

 
Model 
Index 

Number in 
Model R-Square 

Adjusted 
R-Square C(p) Variables in Model 

1 1 0.7434 0.7345 11.9967 RunTime 
2 1 0.6067 0.5931 32.7650 Performance 
3 1 0.1595 0.1305 100.7200 Rest_Pulse 
4 1 0.1585 0.1294 100.8736 Run_Pulse 
5 1 0.0971 0.0660 110.1977 Age 
6 1 0.0561 0.0235 116.4349 Maximum_Pulse 
7 1 0.0265 -0.0070 120.9214 Weight 
8 2 0.7647 0.7479 10.7530 RunTime Age 
9 2 0.7614 0.7444 11.2503 RunTime Run_Pulse 

10 2 0.7590 0.7418 11.6205 Performance RunTime 
11 2 0.7475 0.7295 13.3606 Performance Run_Pulse 
12 2 0.7452 0.7270 13.7166 RunTime Maximum_Pulse 
13 2 0.7449 0.7267 13.7588 RunTime Weight 
14 2 0.7435 0.7252 13.9735 RunTime Rest_Pulse 

There are many models to compare. It would be unwieldy to try to determine the best model by viewing 
the output tables. Therefore, it is advisable to look at the ODS plots. 

 

The R-square plot compares all models based on their R-square values. As noted earlier, adding variables 
to a model always increases R-square, and therefore the full model is always best. Therefore, you can 
only use the R-square value to compare models of equal numbers of parameters. 
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The adjusted R square does not have the problem that the R square has. You can compare models of 
different sizes. In this case, it is difficult to see which model has the higher adjusted R square, the starred 
model for six parameters or seven parameters. 
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The line Cp=p is plotted to help you identify models that satisfy the criterion Cp≤p for prediction.  
The lower line is plotted to help identify which models satisfy Hocking's criterion Cp≤2p−pfull+1 for 
parameter estimation. 

Use the graph and review the output to select a relatively short list of models that satisfy the criterion 
appropriate for your objective. The first model to fall below the line for Mallows' criterion has five 
parameters. The first model to fall below Hocking's criterion has six parameters. 

It is often the case that the best model is difficult to see because of the range of Cp values at the high end. 
These models are clearly not the best and therefore you can focus on the models near the bottom of the 
range of Cp. 
/*st103d05.sas*/  /*Part B*/ 
ods graphics / imagemap=on; 
proc reg data=sasuser.fitness plots(only)=(cp); 
   ALL_REG: model oxygen_consumption= 
                     Performance RunTime Age Weight 
                     Run_Pulse Rest_Pulse Maximum_Pulse 
           / selection=cp rsquare adjrsq best=20; 
   title 'Best Models Using All-Regression Option'; 
run; 
quit; 

Selected SELECTION= option methods: 

BEST=n limits the output to only the best n models. 
Model 
Index 

Number 
in Model C(p) R-Square 

Adjusted 
R-Square Variables in Model 

1 4 4.0004 0.8355 0.8102 RunTime Age Run_Pulse Maximum_Pulse 
2 5 4.2598 0.8469 0.8163 RunTime Age Weight Run_Pulse Maximum_Pulse 
3 5 4.7158 0.8439 0.8127 Performance RunTime Weight Run_Pulse Maximum_Pulse 
4 5 4.7168 0.8439 0.8127 Performance RunTime Age Run_Pulse Maximum_Pulse 
5 4 4.9567 0.8292 0.8029 Performance RunTime Run_Pulse Maximum_Pulse 
6 3 5.8570 0.8101 0.7890 RunTime Run_Pulse Maximum_Pulse 
7 3 5.9367 0.8096 0.7884 RunTime Age Run_Pulse 
8 5 5.9783 0.8356 0.8027 RunTime Age Run_Pulse Rest_Pulse Maximum_Pulse 
9 5 5.9856 0.8356 0.8027 Performance Age Weight Run_Pulse Maximum_Pulse 

10 6 6.0492 0.8483 0.8104 Performance RunTime Age Weight Run_Pulse Maximum_Pulse 
11 6 6.1758 0.8475 0.8094 RunTime Age Weight Run_Pulse Rest_Pulse Maximum_Pulse 
12 6 6.6171 0.8446 0.8057 Performance RunTime Weight Run_Pulse Rest_Pulse Maximum_Pulse 
13 6 6.7111 0.8440 0.8049 Performance RunTime Age Run_Pulse Rest_Pulse Maximum_Pulse 
14 4 6.8865 0.8165 0.7882 Performance RunTime Age Run_Pulse 
15 5 6.9446 0.8293 0.7951 Performance RunTime Run_Pulse Rest_Pulse Maximum_Pulse 
16 4 6.9623 0.8160 0.7877 RunTime Weight Run_Pulse Maximum_Pulse 
17 4 7.0752 0.8152 0.7868 RunTime Age Weight Run_Pulse 
18 3 7.1734 0.8014 0.7794 Performance RunTime Run_Pulse 
19 6 7.7279 0.8373 0.7966 Performance Age Weight Run_Pulse Rest_Pulse Maximum_Pulse 
20 4 7.7942 0.8105 0.7814 RunTime Run_Pulse Rest_Pulse Maximum_Pulse 
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Investigate the plot of Mallows’ C(p). 

 

In this example the number of variables in the full model, pfull, equals 8 (seven variables plus the 
intercept). 

The smallest model with an observation below the Mallows line has p=5 (which matches to Number in 
Model of 4 in the previous table). The model with the star at five parameters and the model above it are 
considered “best,” based on Mallows’ original criterion. The starred model has a Cp=4.004, satisfying 
Mallows' criterion (Oxygen_Consumption=RunTime Age Run_Pulse Maximum_Pulse) and the one 
above has a value of 4.9567 (Oxygen_Consumption=Performance RunTime Run_Pulse 
Maximum_Pulse). The only difference between the two models is that the first includes Age and the 
second includes Performance. By the strictest definition, the second model should be selected, because 
its Cp value is closest to p. 

The smallest model that falls under the Hocking line has p=6. The model with the smaller Cp value will be 
considered the “best” explanatory model. The table shows that the first model with p=6 is 
Oxygen_Consumption=RunTime Age Weight Run_Pulse Maximum_Pulse, with a Cp value of 
4.2598. Two other models that are also below the Hocking line are Oxygen_Consumption=Performance 
RunTime Weight Run_Pulse Maximum_Pulse and Oxygen_Consumption=Performance RunTime 
Age Run_Pulse Maximum_Pulse. (They are nearly on top of one another in the plot.) 
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“Best” Models – Prediction
The two best candidate models based on Mallows’ 
original criterion includes these regressor variables: 

p=5 Cp=4.0004
R2=0.8355

Adj. R2=0.8102 

RunTime, Age, Run_Pulse, 
Maximum_Pulse

p=5 Cp=4.9567
R2=0.8292 

Adj. R2=0.8029

Performance, RunTime, 
Run_Pulse, Maximum_Pulse

 

Some models might be essentially equivalent based on their Cp, R square, or other measures. When, as in 
this case, there are several candidate “best” models, it is the responsibility of the investigator to determine 
which model makes the most sense based on theory and experience. The choice between these two 
models is essentially the choice between Age and Performance. Because age is much easier to measure 
than the subjective measure of performance, the first model is selected here. 

A limitation of the evaluation that you did thus far is that you do not know the magnitude and signs of the 
coefficients of the candidate models or their statistical significance. 
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“Best” Models – Parameter Estimation
The three best candidate models for analytic purposes, 
according to Hocking, include those listed below: 

p=6 Cp=4.2598
R2=0.8469

Adj. R2=0.8163 

RunTime, Age, Weight, 
Run_Pulse, Maximum_Pulse

p=6 Cp=4.7158
R2=0.8439 

Adj. R2=0.8127

Performance, RunTime, 
Weight, Run_Pulse, 
Maximum_Pulse

p=6 Cp=4.7168
R2=0.8439 

Adj. R2=0.8127

Performance, RunTime, Age, 
Run_Pulse, Maximum_Pulse

8 4  

The variables RunTime, Run_Pulse, and Maximum_Pulse once again appear in all candidate models. 
The choice of models depends on the selection of pairs from Performance, Age, and Weight. You again 
choose a model with objective measures, Age and Weight. That is the top model in the list. Your choice 
might differ. 
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Estimating and Testing the Coefficients for the Selected 
Models 

Example: Invoke PROC REG to compare the ANOVA tables and parameter estimates for the  
two-candidate models in the fitness data set. 

/*st103d06.sas*/ 
ods graphics off; 
proc reg data=sasuser.fitness; 
   PREDICT: model Oxygen_Consumption= 
                    RunTime Age Run_Pulse Maximum_Pulse; 
   EXPLAIN: model Oxygen_Consumption= 
                    RunTime Age Weight Run_Pulse Maximum_Pulse; 
   title 'Check "Best" Two Candidate Models'; 
run; 
quit; 
ods graphics on; 

PROC REG can have more than one MODEL statement. You can assign a label to each MODEL 
statement to identify the output generated for each model.  

Output for the PREDICT Model 
Number of Observations Read 31 
Number of Observations Used 31 

 

Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 
Model 4 711.45087 177.86272 33.01 <.0001 
Error 26 140.10368 5.38860   
Corrected Total 30 851.55455    

 

Root MSE 2.32134 R-Square 0.8355 
Dependent Mean 47.37581 Adj R-Sq 0.8102 
Coeff Var 4.89984   

 

Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 
Intercept 1 97.16952 11.65703 8.34 <.0001 
RunTime 1 -2.77576 0.34159 -8.13 <.0001 
Age 1 -0.18903 0.09439 -2.00 0.0557 
Run_Pulse 1 -0.34568 0.11820 -2.92 0.0071 
Maximum_Pulse 1 0.27188 0.13438 2.02 0.0534 
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The R square and adjusted R square are the same as calculated during the model selection program. If 
there are missing values in the data set, however, this might not be true. 

The model F is large and highly significant. Age and Maximum_Pulse are not significant at the 0.05 
level of significance. However, all terms are significant at alpha=0.10. 

The adjusted R square is close to the R square, which suggests that there are not too many variables in the 
model. 

Output for the EXPLAIN Model 
Number of Observations Read 31 
Number of Observations Used 31 

 
Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 
Model 5 721.20532 144.24106 27.66 <.0001 
Error 25 130.34923 5.21397   
Corrected Total 30 851.55455    

 
Root MSE 2.28341 R-Square 0.8469 
Dependent Mean 47.37581 Adj R-Sq 0.8163 
Coeff Var 4.81978   

 
Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 
Intercept 1 101.33835 11.86474 8.54 <.0001 
RunTime 1 -2.68846 0.34202 -7.86 <.0001 
Age 1 -0.21217 0.09437 -2.25 0.0336 
Weight 1 -0.07332 0.05360 -1.37 0.1836 
Run_Pulse 1 -0.37071 0.11770 -3.15 0.0042 
Maximum_Pulse 1 0.30603 0.13452 2.28 0.0317 

The adjusted R square is slightly larger than in the PREDICT model and very close to the R square. 

The model F is large, but smaller than in the PREDICT model. However, it is still highly significant. All 
terms included in the model are significant except Weight. The p-values for Age, Run_Pulse, and 
Maximum_Pulse are smaller in this model than they were in the PREDICT model. 

Including the additional variable in the model changes the coefficients of the other terms and changes the 
t statistics for all. 
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3.06 Multiple Choice Poll
Which value tends to increase (can never decrease) as 
you add predictor variables to your regression model?
a. R square
b. Adjusted R square
c. Mallows’ Cp

d. Both a and b
e. F statistic
f. All of the above

8 7  
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Stepwise Selection Methods
FORWARD
SELECTION

BACKWARD
ELIMINATION

STEPWISE
SELECTION

8 9  

The all-possible regression technique that was discussed can be computer intensive, especially if there are 
a large number of potential independent variables. 

PROC REG also offers the following stepwise SELECTION= options: 

FORWARD first selects the best one-variable model. Then it selects the best two variables among 
those that contain the first selected variable. FORWARD continues this process, but stops 
when it reaches the point where no additional variables have p-value levels less than 
some stopping criterion (0.50, by default). 

BACKWARD starts with the full model. Next, the variable that is least significant, given the other 
variables, is removed from the model. BACKWARD continues this process until all of 
the remaining variables have p-values less than a stopping criterion value (0.10, by 
default). 

STEPWISE works like a combination of the FORWARD and BACKWARD method. The default 
entry p-value is 0.15 and the default stay p-value is also 0.15. 

 The SLENTRY= (for forward step stopping criteria) and SLSTAY= (for backward step stopping 
criteria) options can be used to change the default stopping values. 
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Forward Selection

9 6

1
2
3
4
5

Stop

0

 

Forward selection starts with an empty model. The method computes an F statistic for each predictor 
variable not in the model and examines the largest of these statistics. If it is significant at a specified 
significance level (specified by the SLENTRY= option), the corresponding variable is added to the 
model. After a variable is entered in the model, it is never removed from the model. The process is 
repeated until none of the remaining variables meets the specified level for entry. By default, 
SLENTRY=0.50. 
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Backward Elimination

1 0 4

4
5
6

Stop

0
1
2
3

 

Backward elimination starts off with the full model. Results of the F test for individual parameter 
estimates are examined, and the least significant variable that falls above the specified significance level 
(specified by the SLSTAY= option) is removed. After a variable is removed from the model, it remains 
excluded. The process is repeated until no other variable in the model meets the specified significance 
level for removal. By default, SLSTAY=0.10. 
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Stepwise Selection

1 1 2

1
2
3
4
5
6

Stop

0

 

Stepwise selection is similar to forward selection in that it starts with an empty model and incrementally 
builds a model one variable at a time. However, the method differs from forward selection in that 
variables already in the model do not necessarily remain. The backward component of the method 
removes variables from the model that do not meet the significance criteria specified in the SLSTAY= 
option. The stepwise selection process terminates if no further variables can be added to the model or if 
the variable entered into the model is the only variable removed in the subsequent backward elimination. 
By default, SLENTRY=0.15 and SLSTAY=0.15. 

Stepwise selection (Forward, Backward, and Stepwise) has some serious shortcomings. Simulation 
studies (Derksen and Keselman 1992) evaluating variable selection techniques found the following: 

1. The degree of collinearity among the predictor variables affected the frequency with which authentic 
predictor variables found their way into the final model. 

2. The number of candidate predictor variables affected the number of noise variables that gained entry 
to the model. 

3. The size of the sample was of little practical importance in determining the number of authentic 
variables contained in the final model. 

One recommendation is to use the variable selection methods to create several candidate models, and then 
use subject-matter knowledge to select the variables that result in the best model within the scientific or 
business context of the problem. Therefore, you are simply using these methods as a useful tool in the 
model-building process (Hosmer and Lemeshow 2000). 
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113

Are p-values and Parameter Estimates 
Correct?
Automated model selection results in the following:
 biases in parameter estimates, predictions, and 

standard errors
 incorrect calculation of degrees of freedom
 p-values that tend to err on the side of overestimating 

significance (increasing Type I Error probability)

 

Statisticians give warnings and cautions about the appropriate interpretation of p-values from models 
chosen using any automated variable selection technique. Refitting many submodels in terms of an 
optimum fit to the data distorts the significance levels of conventional statistical tests. However, many 
researchers and users of statistical software neglect to report that the models that they ended up with were 
chosen using automated methods. They report statistical quantities such as standard errors, confidence 
limits, p-values, and R square as if the resulting model were entirely prespecified. These inferences are 
inaccurate, tending to err on the side of overstating the significance of predictors and making predictions 
with overly optimistic confidence. This problem is very evident when there are many iterative stages in 
model building. When there are many variables and you use stepwise selection to find a small subset of 
variables, inferences become less accurate (Chatfield 1995, Raftery 1994, Freedman 1983). 

One solution to this problem is to split your data. One part can be used for finding the regression model 
and the other part can be used for inference. Another solution is to use bootstrapping methods to obtain 
the correct standard errors and p-values. Bootstrapping is a resampling method that tries to approximate 
the distribution of the parameter estimates to estimate the standard error. 
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Stepwise Regression 

 

Example: Select a model for predicting Oxygen_Consumption in the fitness data set by using the 
FORWARD, BACKWARD, and STEPWISE methods. 

/*st103d07.sas*/ 
proc reg data=sasuser.fitness plots(only)=adjrsq; 
   FORWARD:  model oxygen_consumption= 
                      Performance RunTime Age Weight 
                      Run_Pulse Rest_Pulse Maximum_Pulse 
            / selection=forward; 
   BACKWARD: model oxygen_consumption= 
                      Performance RunTime Age Weight 
                      Run_Pulse Rest_Pulse Maximum_Pulse 
            / selection=backward; 
   STEPWISE: model oxygen_consumption= 
                      Performance RunTime Age Weight 
                      Run_Pulse Rest_Pulse Maximum_Pulse 
            / selection=stepwise; 
   title 'Best Models Using Stepwise Selection'; 
run; 
quit; 

Partial PROC REG Output 
Number of Observations Read 31 
Number of Observations Used 31 

 
Forward Selection: Step 1 

 
Variable RunTime Entered: R-Square = 0.7434 and C(p) = 11.9967 

 
Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 
Model 1 633.01458 633.01458 84.00 <.0001 
Error 29 218.53997 7.53586   
Corrected Total 30 851.55455    

 

Variable 
Parameter 

Estimate 
Standard 

Error Type II SS F Value Pr > F 
Intercept 82.42494 3.85582 3443.63138 456.97 <.0001 
RunTime -3.31085 0.36124 633.01458 84.00 <.0001 

… 
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Partial PROC REG Output (Continued) 
Summary of Forward Selection 

Step 
Variable 
Entered 

Number 
Vars In 

Partial 
R-Square 

Model 
R-Square C(p) F Value Pr > F 

1 RunTime 1 0.7434 0.7434 11.9967 84.00 <.0001 
2 Age 2 0.0213 0.7647 10.7530 2.54 0.1222 
3 Run_Pulse 3 0.0449 0.8096 5.9367 6.36 0.0179 
4 Maximum_Pulse 4 0.0259 0.8355 4.0004 4.09 0.0534 
5 Weight 5 0.0115 0.8469 4.2598 1.87 0.1836 

The model selected at each step is printed and a summary of the sequence of steps is given at the end of 
the output. In the summary, the variables are listed in the order in which they were selected. The partial R 
square shows the increase in the model R square as each term was added. 

The model that FORWARD selected has the same variables as the model chosen using the all-regressions 
techniques with the Hocking criterion. This will not always be the case. 

 

The Adjusted R-Square plot shows the progression of that statistic at each step. The star denotes the best 
model of the five that were tested. This is not necessarily the highest adjusted R-square value of all 
possible subsets, but is the best of the five tested in the Forward model. 
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Partial PROC REG Output (Continued) 
Backward Elimination: Step 0 

 
All Variables Entered: R-Square = 0.8486 and C(p) = 8.0000 

 
 

Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 
Model 7 722.66124 103.23732 18.42 <.0001 
Error 23 128.89331 5.60406   
Corrected Total 30 851.55455    

 

Variable 
Parameter 

Estimate 
Standard 

Error Type II SS F Value Pr > F 
Intercept 131.78249 72.20754 18.66607 3.33 0.0810 
Performance -0.12619 0.30097 0.98519 0.18 0.6789 
RunTime -3.86019 2.93659 9.68350 1.73 0.2016 
Age -0.46082 0.58660 3.45842 0.62 0.4401 
Weight -0.05812 0.06892 3.98514 0.71 0.4078 
Run_Pulse -0.36207 0.12324 48.37354 8.63 0.0074 
Rest_Pulse -0.01512 0.06817 0.27581 0.05 0.8264 
Maximum_Pulse 0.30102 0.13981 25.97886 4.64 0.0420 

 
Bounds on condition number: 162.85, 2262.9 

 
Backward Elimination: Step 1 

 
Variable Rest_Pulse Removed: R-Square = 0.8483 and C(p) = 6.0492 

 
Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 
Model 6 722.38543 120.39757 22.37 <.0001 
Error 24 129.16912 5.38205   
Corrected Total 30 851.55455    

 

Variable 
Parameter 

Estimate 
Standard 

Error Type II SS F Value Pr > F 
Intercept 133.73795 70.23358 19.51494 3.63 0.0689 
Performance -0.13647 0.29144 1.18011 0.22 0.6438 
RunTime -3.99624 2.81438 10.85139 2.02 0.1685 
Age -0.47577 0.57106 3.73583 0.69 0.4130 
Weight -0.05545 0.06650 3.74132 0.70 0.4126 
Run_Pulse -0.36430 0.12037 49.29878 9.16 0.0058 
Maximum_Pulse 0.30184 0.13696 26.13890 4.86 0.0374 
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… 

Partial PROC REG Output (Continued) 
Summary of Backward Elimination 

Step 
Variable 
Removed 

Number 
Vars In 

Partial 
R-Square 

Model 
R-Square C(p) F Value Pr > F 

1 Rest_Pulse 6 0.0003 0.8483 6.0492 0.05 0.8264 
2 Performance 5 0.0014 0.8469 4.2598 0.22 0.6438 
3 Weight 4 0.0115 0.8355 4.0004 1.87 0.1836 

Using the BACKWARD elimination option and the default p-value, three independent variables were 
eliminated. By coincidence the final model is the same as the one considered best based on Cp, using the 
Mallows criterion. 

 

The adjusted R-square for the model at step 2 (before Weight was removed) was greatest of the three 
tested. 
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Partial PROC REG Output (Continued) 
Summary of Stepwise Selection 

Step 
Variable 
Entered 

Variable 
Removed 

Number 
Vars In 

Partial 
R-Square 

Model 
R-Square C(p) F Value Pr > F 

1 RunTime  1 0.7434 0.7434 11.9967 84.00 <.0001 
2 Age  2 0.0213 0.7647 10.7530 2.54 0.1222 
3 Run_Pulse  3 0.0449 0.8096 5.9367 6.36 0.0179 
4 Maximum_Pulse  4 0.0259 0.8355 4.0004 4.09 0.0534 

Using the STEPWISE option and the default variable entry and removal p-value criteria, the same subset 
resulted as that using the BACKWARD option. 

 

The SLENTRY= default criterion is p<0.50 for the FORWARD method and p<.15 for the STEPWISE 
method. After RunTime was entered into the model, Age was entered at step 2 with a p-value of 0.1222. 
If the SLENTRY= criterion were set to something less than 0.10, the final model would be quite different. 
It would include only one variable, RunTime. This underscores the precariousness of relying on one 
stepwise method for defining a “best” model. 

 The scale of the default Y axes in these plots might give misleading information about the effect 
of adding or removing variables. The same plots displayed side-by-side and using a common y-
scale of 0 to 1 is shown below. The differences do not look nearly as great. 
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 The “Bounds on the condition number” reported at each step of the output for the STEPWISE 
selection methods refer to a measurement of collinearity (correlation among predictor variables). 
(The concept of collinearity is discussed in a later chapter.) 
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Stepwise Regression Models*

1 1 5

FORWARD RunTime, Age, Weight, 
Run_Pulse, 
Maximum_Pulse

BACKWARD RunTime, Age, 
Run_Pulse, 
Maximum_Pulse

STEPWISE RunTime, Age, 
Run_Pulse, 
Maximum_Pulse

* Using default values of 
SLENTRY and SLSTAY

 

The final models obtained using the default SLENTRY= and SLSTAY= criteria are displayed. It is 
important to note that the choice of criterion levels can greatly affect the final models that are selected 
using stepwise methods.  Some analysts use the defaults to get models to a manageable size then do 
manual reduction instead of using low values for SLENTRY and SLSTAY. 

116

Stepwise Models, Alternative Criteria

1 1 6

FORWARD
(slentry=0.05)

RunTime

BACKWARD
(slstay=0.05)

RunTime, 
Run_Pulse, 
Maximum_Pulse

STEPWISE
(slentry=0.05,
slstay=0.05)

RunTime

 

The final models using 0.05 as the forward and backward step criteria resulted in very different models 
than those chosen using the default criteria. 



3-94 Chapter 3  Regression 

  

Copyright © 2012, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. 

117

Comparison of Selection Methods
Stepwise regression uses fewer computer 

resources.

All-possible regression generates more candidate 
models that might have nearly 
equal R2 statistics and Cp
statistics.

1 1 7  

The stepwise regression methods have an advantage when there are a large number of independent 
variables. 

With the all-possible regression techniques, you can compare essentially equivalent models and use your 
knowledge of the data set and subject area to select a model that is more easily interpreted. 
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Exercises 

 

6.   Using All-Regression Techniques 

Use the sasuser.BodyFat2 data set to identify a set of “best” models. 

a.   With the SELECTION=CP option, use an all-possible regression technique to identify a set of 
candidate models that predict PctBodyFat2 as a function of the variables Age, Weight, Height, 
Neck, Chest, Abdomen, Hip, Thigh, Knee, Ankle, Biceps, Forearm, and Wrist.  

Hint: Select only the best 60 models based on Cp to compare. 

b.   Use a stepwise regression method to select a candidate model. Try FORWARD, STEPWISE, and 
BACKWARD. 

c.   How many variables would result from a model using FORWARD selection and a significance 
level for entry criterion of 0.05, instead of the default SLENTRY of 0.50? 

121

3.07 Poll
The STEPWISE, BACKWARD, and FORWARD 
strategies result in the same final model if the same 
significance levels are used in all three.

 True
 False

1 2 1  
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3.5 Solutions 

Solutions to Exercises 

1.   Describing the Relationships between Continuous Variables 

a.   Generate scatter plots and correlations for the VAR variables Age, Weight, Height, and the 
circumference measures versus the WITH variable, PctBodyFat2. 

 Important! ODS Graphics in PROC CORR limits you to 10 VAR variables at a time, so 
for this exercise, look at the relationships with Age, Weight, and Height separately from 
the other variables. 

 Correlation tables can be created using more than 10 VAR variables at a time. 
/*st103s01.sas*/  /*Part A*/ 
proc corr data=sasuser.BodyFat2 rank 
          plots(only)=scatter(nvar=all ellipse=none); 
   var Age Weight Height; 
   with PctBodyFat2; 
   title "Correlations and Scatter Plots with Body Fat %"; 
run; 
 
proc corr data=sasuser.BodyFat2 rank 
          plots(only)=scatter(nvar=all ellipse=none); 
   var Neck Chest Abdomen Hip Thigh 
       Knee Ankle Biceps Forearm Wrist; 
   with PctBodyFat2; 
   title "Correlations and Scatter Plots with Body Fat %"; 
run; 

 
1 With Variables: PctBodyFat2 
3      Variables: Age         Weight      Height 

 
Simple Statistics 

Variable N Mean Std Dev Sum Minimum Maximum 
PctBodyFat2 252 19.15079 8.36874 4826 0 47.50000 
Age 252 44.88492 12.60204 11311 22.00000 81.00000 
Weight 252 178.92440 29.38916 45089 118.50000 363.15000 
Height 252 70.30754 2.60958 17718 64.00000 77.75000 
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Pearson Correlation Coefficients, N = 252 
Prob > |r| under H0: Rho=0 

PctBodyFat2 Weight 
0.61241 
<.0001 

Age 
0.29146 
<.0001 

Height 
-0.02529 

0.6895 

 

 

 
1 With Variables: PctBodyFat2 
10       Variables: Neck        Chest       Abdomen     Hip         Thigh       Knee        Ankle       Biceps      Forearm     Wrist 
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Simple Statistics 
Variable N Mean Std Dev Sum Minimum Maximum 
PctBodyFat2 252 19.15079 8.36874 4826 0 47.50000 
Neck 252 37.99206 2.43091 9574 31.10000 51.20000 
Chest 252 100.82421 8.43048 25408 79.30000 136.20000 
Abdomen 252 92.55595 10.78308 23324 69.40000 148.10000 
Hip 252 99.90476 7.16406 25176 85.00000 147.70000 
Thigh 252 59.40595 5.24995 14970 47.20000 87.30000 
Knee 252 38.59048 2.41180 9725 33.00000 49.10000 
Ankle 252 23.10238 1.69489 5822 19.10000 33.90000 
Biceps 252 32.27341 3.02127 8133 24.80000 45.00000 
Forearm 252 28.66389 2.02069 7223 21.00000 34.90000 
Wrist 252 18.22976 0.93358 4594 15.80000 21.40000 

 

Pearson Correlation Coefficients, N = 252 
Prob > |r| under H0: Rho=0 

PctBodyFat2 Abdomen 
0.81343 
<.0001 

Chest 
0.70262 
<.0001 

Hip 
0.62520 
<.0001 

Thigh 
0.55961 
<.0001 

Knee 
0.50867 
<.0001 

Biceps 
0.49327 
<.0001 

Neck 
0.49059 
<.0001 

Forearm 
0.36139 
<.0001 

Wrist 
0.34657 
<.0001 

Ankle 
0.26597 
<.0001 
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1)  Can straight lines adequately describe the relationships? 

Height seems to be the only variable that shows no real linear relationship. Age and 
Ankle show little linear trend. 

2)  Are there any outliers that you should investigate? 

The Weight outlier is present again, as well as Neck, Abdomen, Hip, Knee, and Biceps. 
There are two outliers for Ankle. 
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3)  What variable has the highest correlation with PctBodyFat2? 

Abdomen, with 0.81343, is the variable with the highest correlation with PctBodyFat2. 

a)  What is the p-value for the coefficient? 

<.0001 

b)  Is it statistically significant at the 0.05 level? 

Yes 

b.   Generate correlations among all of the VAR variables (Age, Weight, Height) among one another 
and among the circumference measures. Are there any notable relationships? 
/*st103s01.sas*/  /*Part B*/ 
proc corr data=sasuser.BodyFat2 nosimple  
          plots=matrix(nvar=all histogram); 
   var Age Weight Height; 
   title "Correlations and Scatter Plot Matrix of Basic Measures"; 
run; 
 
proc corr data=sasuser.BodyFat2 nosimple  
          plots=matrix(nvar=all histogram); 
   var Neck Chest Abdomen Hip Thigh 
       Knee Ankle Biceps Forearm Wrist; 
   title "Correlations and Scatter Plot Matrix of Circumferences"; 
run; 
 
proc corr data=sasuser.BodyFat2 nosimple  
          plots=matrix(nvar=all histogram); 
   var Neck Chest Abdomen Hip Thigh 
       Knee Ankle Biceps Forearm Wrist; 
   with Age Weight Height; 
   title "Correlations and Scatter Plot Matrix of Circumferences"; 
run; 

 
Pearson Correlation Coefficients, N = 252 

Prob > |r| under H0: Rho=0 
 Age Weight Height 

Age 1.00000 
 

-0.01275 
0.8404 

-0.24521 
<.0001 

Weight -0.01275 
0.8404 

1.00000 
 

0.48689 
<.0001 

Height -0.24521 
<.0001 

0.48689 
<.0001 

1.00000 
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Height and Weight seem to correlate relatively strongly. The outlier might affect the measurement 
of the relationship. 
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Pearson Correlation Coefficients, N = 252 
Prob > |r| under H0: Rho=0 

 Neck Chest Abdomen Hip Thigh Knee Ankle Biceps Forearm Wrist 
Neck 1.00000 

 
0.78484 
<.0001 

0.75408 
<.0001 

0.73496 
<.0001 

0.69570 
<.0001 

0.67240 
<.0001 

0.47789 
<.0001 

0.73115 
<.0001 

0.62366 
<.0001 

0.74483 
<.0001 

Chest 0.78484 
<.0001 

1.00000 
 

0.91583 
<.0001 

0.82942 
<.0001 

0.72986 
<.0001 

0.71950 
<.0001 

0.48299 
<.0001 

0.72791 
<.0001 

0.58017 
<.0001 

0.66016 
<.0001 

Abdomen 0.75408 
<.0001 

0.91583 
<.0001 

1.00000 
 
0.87407 
<.0001 

0.76662 
<.0001 

0.73718 
<.0001 

0.45322 
<.0001 

0.68498 
<.0001 

0.50332 
<.0001 

0.61983 
<.0001 

Hip 0.73496 
<.0001 

0.82942 
<.0001 

0.87407 
<.0001 

1.00000 
 
0.89641 
<.0001 

0.82347 
<.0001 

0.55839 
<.0001 

0.73927 
<.0001 

0.54501 
<.0001 

0.63009 
<.0001 

Thigh 0.69570 
<.0001 

0.72986 
<.0001 

0.76662 
<.0001 

0.89641 
<.0001 

1.00000 
 
0.79917 
<.0001 

0.53980 
<.0001 

0.76148 
<.0001 

0.56684 
<.0001 

0.55868 
<.0001 

Knee 0.67240 
<.0001 

0.71950 
<.0001 

0.73718 
<.0001 

0.82347 
<.0001 

0.79917 
<.0001 

1.00000 
 
0.61161 
<.0001 

0.67871 
<.0001 

0.55590 
<.0001 

0.66451 
<.0001 

Ankle 0.47789 
<.0001 

0.48299 
<.0001 

0.45322 
<.0001 

0.55839 
<.0001 

0.53980 
<.0001 

0.61161 
<.0001 

1.00000 
 
0.48485 
<.0001 

0.41905 
<.0001 

0.56619 
<.0001 

Biceps 0.73115 
<.0001 

0.72791 
<.0001 

0.68498 
<.0001 

0.73927 
<.0001 

0.76148 
<.0001 

0.67871 
<.0001 

0.48485 
<.0001 

1.00000 
 

0.67826 
<.0001 

0.63213 
<.0001 

Forearm 0.62366 
<.0001 

0.58017 
<.0001 

0.50332 
<.0001 

0.54501 
<.0001 

0.56684 
<.0001 

0.55590 
<.0001 

0.41905 
<.0001 

0.67826 
<.0001 

1.00000 
 
0.58559 
<.0001 

Wrist 0.74483 
<.0001 

0.66016 
<.0001 

0.61983 
<.0001 

0.63009 
<.0001 

0.55868 
<.0001 

0.66451 
<.0001 

0.56619 
<.0001 

0.63213 
<.0001 

0.58559 
<.0001 

1.00000 
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There are several relationships that appear to have high correlations (such as those among 
Hip, Thigh, and Knee). 

Pearson Correlation Coefficients, N = 252 
Prob > |r| under H0: Rho=0 

 Neck Chest Abdomen Hip Thigh Knee Ankle Biceps Forearm Wrist 
Age 0.11351 

0.0721 
0.17645 

0.0050 
0.23041 

0.0002 
-0.05033 

0.4263 
-0.20010 

0.0014 
0.01752 

0.7820 
-0.10506 

0.0961 
-0.04116 

0.5154 
-0.08506 

0.1783 
0.21353 

0.0006 
Weight 0.83072 

<.0001 
0.89419 
<.0001 

0.88799 
<.0001 

0.94088 
<.0001 

0.86869 
<.0001 

0.85317 
<.0001 

0.61369 
<.0001 

0.80042 
<.0001 

0.63030 
<.0001 

0.72977 
<.0001 

Height 0.32114 
<.0001 

0.22683 
0.0003 

0.18977 
0.0025 

0.37211 
<.0001 

0.33856 
<.0001 

0.50050 
<.0001 

0.39313 
<.0001 

0.31851 
<.0001 

0.32203 
<.0001 

0.39778 
<.0001 
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Weight seems to correlate highly with all circumference variables. 

2.   Fitting a Simple Linear Regression Model 

Use the sasuser.BodyFat2 data set for this exercise. 

a.   Perform a simple linear regression model with PctBodyFat2 as the response variable and Weight 
as the predictor. 

/*st103s02.sas*/  /*Part A*/ 
ods graphics off; 
proc reg data=sasuser.BodyFat2; 
   model PctBodyFat2=Weight; 
   title "Regression of % Body Fat on Weight"; 
run; 
quit; 
ods graphics on; 

 
Number of Observations Read 252 
Number of Observations Used 252 

 
Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 
Model 1 6593.01614 6593.01614 150.03 <.0001 
Error 250 10986 43.94389   
Corrected Total 251 17579    

 
Root MSE 6.62902 R-Square 0.3751 
Dependent Mean 19.15079 Adj R-Sq 0.3726 
Coeff Var 34.61485   
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Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 
Intercept 1 -12.05158 2.58139 -4.67 <.0001 
Weight 1 0.17439 0.01424 12.25 <.0001 

1)  What is the value of the F statistic and the associated p-value? How would you interpret this 
with regard to the null hypothesis? 

The F value is 150.03 and the p-value is <.0001. You would reject the null hypothesis of 
no relationship. 

2)  Write the predicted regression equation. 

From the parameter estimates table, the predicted value equation is as follows:  
PctBodyFat2=-12.05158+0.17439*Weight. 

3)  What is the value of the R-square statistic? How would you interpret this? 

The R-square value of 0.3751 can be interpreted to mean that 37.51% of the variability 
in PctBodyFat2 can be explained by Weight. 

b.   Produce predicted values for PctBodyFat2 when Weight is 125, 150, 175, 200, and 225. 
/*st103s02.sas*/  /*Part B*/ 
ods graphics off; 
proc reg data=sasuser.BodyFat2 outest=Betas; 
   PredBodyFat: model PctBodyFat2=Weight; 
   title "Regression of % Body Fat on Weight"; 
run; 
quit; 
ods graphics on; 
 
data ToScore; 
   input Weight @@; 
   datalines; 
125 150 175 200 225 
; 
run; 
 
proc score data=ToScore score=Betas 
           out=Scored type=parms; 
   var Weight; 
run; 
 
proc print data=Scored; 
   title "Predicted % Body Fat from Weight 125 150 175 200 225"; 
run; 
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Obs Weight PredBodyFat 
1 125 9.7470 
2 150 14.1067 
3 175 18.4664 
4 200 22.8261 
5 225 27.1859 

What are the predicted values? 

The predicted values are as listed in the output above under PredBodyFat. 

3.   Performing Multiple Regression Using the REG Procedure 

a.   Using the sasuser.BodyFat2 data set, run a regression of PctBodyFat2 on the variables Age, 
Weight, Height, Neck, Chest, Abdomen, Hip, Thigh, Knee, Ankle, Biceps, Forearm, and 
Wrist. 

1)  Compare the ANOVA table with that from the model with only Weight in the previous 
exercise. What is different? 

/*st103s03.sas*/  /*Part A*/ 
proc reg data=sasuser.BodyFat2; 
   model PctBodyFat2=Age Weight Height 
         Neck Chest Abdomen Hip Thigh 
         Knee Ankle Biceps Forearm Wrist; 
   title 'Regression of PctBodyFat2 on All ' 
         'Predictors'; 
run; 
quit; 

PROC REG Output 
Number of Observations Read 252 
Number of Observations Used 252 

 
Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 
Model 13 13159 1012.22506 54.50 <.0001 
Error 238 4420.06401 18.57170   
Corrected Total 251 17579    

 
Root MSE 4.30949 R-Square 0.7486 
Dependent Mean 19.15079 Adj R-Sq 0.7348 
Coeff Var 22.50293   
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Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 
Intercept 1 -21.35323 22.18616 -0.96 0.3368 
Age 1 0.06457 0.03219 2.01 0.0460 
Weight 1 -0.09638 0.06185 -1.56 0.1205 
Height 1 -0.04394 0.17870 -0.25 0.8060 
Neck 1 -0.47547 0.23557 -2.02 0.0447 
Chest 1 -0.01718 0.10322 -0.17 0.8679 
Abdomen 1 0.95500 0.09016 10.59 <.0001 
Hip 1 -0.18859 0.14479 -1.30 0.1940 
Thigh 1 0.24835 0.14617 1.70 0.0906 
Knee 1 0.01395 0.24775 0.06 0.9552 
Ankle 1 0.17788 0.22262 0.80 0.4251 
Biceps 1 0.18230 0.17250 1.06 0.2917 
Forearm 1 0.45574 0.19930 2.29 0.0231 
Wrist 1 -1.65450 0.53316 -3.10 0.0021 

There are key differences between the ANOVA table for this model and the Simple 
Linear Regression model. 
• The degrees of freedom for the model are much higher, 13 versus 1. 
• The Mean Square model and the F ratio are much smaller. 

2)  How do the R square and the adjusted R square compare with these statistics for the Weight 
regression demonstration? 

Both the R square and adjusted R square for the full models are larger than the simple 
linear regression. The multiple regression model explains almost 75% of the variation in 
the PctBodyFat2 variable versus only about 37.5% explained by the simple linear 
regression model. 

3)  Did the estimate for the intercept change? Did the estimate for the coefficient of Weight 
change? 

Yes, including the other variables in the model changed the estimates both of the 
intercept and the slope for Weight. Also, the p-values for both changed dramatically. 
The slope of Weight is now not significantly different from zero. 
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4.   Simplifying the Model 

a.   Rerun the model in 3a., but eliminate the variable with the highest p-value. Compare the output 
with the Exercise 3a. model. 

This program reruns the regression with Knee removed because it has the largest p-value 
(0.9552). 
/*st103s03.sas*/  /*Part B*/ 
proc reg data=sasuser.BodyFat2; 
   model PctBodyFat2=Age Weight Height 
         Neck Chest Abdomen Hip Thigh 
         Ankle Biceps Forearm Wrist; 
   title 'Remove Knee'; 
run; 
quit; 

PROC REG Output 
Number of Observations Read 252 
Number of Observations Used 252 

 
Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 
Model 12 13159 1096.57225 59.29 <.0001 
Error 239 4420.12286 18.49424   
Corrected Total 251 17579    

 
Root MSE 4.30049 R-Square 0.7486 
Dependent Mean 19.15079 Adj R-Sq 0.7359 
Coeff Var 22.45595   

 
Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 
Intercept 1 -21.30204 22.12123 -0.96 0.3365 
Age 1 0.06503 0.03108 2.09 0.0374 
Weight 1 -0.09602 0.06138 -1.56 0.1191 
Height 1 -0.04166 0.17369 -0.24 0.8107 
Neck 1 -0.47695 0.23361 -2.04 0.0423 
Chest 1 -0.01732 0.10298 -0.17 0.8666 
Abdomen 1 0.95497 0.08998 10.61 <.0001 
Hip 1 -0.18801 0.14413 -1.30 0.1933 
Thigh 1 0.25089 0.13876 1.81 0.0719 
Ankle 1 0.18018 0.21841 0.82 0.4102 
Biceps 1 0.18182 0.17193 1.06 0.2913 
Forearm 1 0.45667 0.19820 2.30 0.0221 
Wrist 1 -1.65227 0.53057 -3.11 0.0021 
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b.   Did the p-value for the model change notably? 

The p-value for the model did not change out to four decimal places. 

c.   Did the R square and adjusted R square change notably?  

The R square showed essentially no change. The adjusted R square increased from 0.7348 to 
0.7359. When an adjusted R square increases by removing a variable from the model, it 
strongly implies that the removed variable was not necessary. 

d.   Did the parameter estimates and their p-values change notably? 

Some of the parameter estimates and their p-values changed slightly, none to any large 
degree. 

5.   More Simplifying of the Model 

a.   Rerun the model in Exercise 4a, but drop the variable with the highest p-value. 

This program reruns the regression with Chest removed, because it is the variable with the 
highest p-value in the previous model. 
/*st103s03.sas*/  /*Part C*/ 
proc reg data=sasuser.BodyFat2; 
   model PctBodyFat2=Age Weight Height 
         Neck Abdomen Hip Thigh 
         Ankle Biceps Forearm Wrist; 
   title 'Remove Knee and Chest'; 
run; 
quit; 

PROC REG Output 
Number of Observations Read 252 
Number of Observations Used 252 

 
Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 
Model 11 13158 1196.21310 64.94 <.0001 
Error 240 4420.64572 18.41936   
Corrected Total 251 17579    

 
Root MSE 4.29178 R-Square 0.7485 
Dependent Mean 19.15079 Adj R-Sq 0.7370 
Coeff Var 22.41044   
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Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 
Intercept 1 -23.13736 19.20171 -1.20 0.2294 
Age 1 0.06488 0.03100 2.09 0.0374 
Weight 1 -0.10095 0.05380 -1.88 0.0618 
Height 1 -0.03120 0.16185 -0.19 0.8473 
Neck 1 -0.47631 0.23311 -2.04 0.0421 
Abdomen 1 0.94965 0.08406 11.30 <.0001 
Hip 1 -0.18316 0.14092 -1.30 0.1950 
Thigh 1 0.25583 0.13534 1.89 0.0599 
Ankle 1 0.18215 0.21765 0.84 0.4035 
Biceps 1 0.18055 0.17141 1.05 0.2933 
Forearm 1 0.45262 0.19634 2.31 0.0220 
Wrist 1 -1.64984 0.52930 -3.12 0.0020 

b.   How did the output change from the previous model? 

The ANOVA table did not change greatly. The R square remained essentially unchanged. 
The adjusted R square increased again, which confirms that the variable Chest did not 
contribute to explaining the variation in PctBodyFat2 when the other variables are in the 
model. 

c.   Did the number of parameters with p-values less than 0.05 change? 

The p-value for Weight changed more than any other and is now just above 0.05. The 
p-values and parameter estimates for other variables changed much less. There are no more 
variables in this model with p-values below 0.05, compared with the previous one. 

6.   Using All-Regression Techniques 

a.   With the SELECTION=CP option, use an all-possible regression technique to identify a set of 
candidate models that predict PctBodyFat2 as a function of the variables Age, Weight, Height, 
Neck, Chest, Abdomen, Hip, Thigh, Knee, Ankle, Biceps, Forearm, and Wrist.  
Hint: Select only the best 60 models based on Cp to compare. 
/*st103s04.sas*/  /*Part A*/ 
ods graphics / imagemap=on; 
 
proc reg data=sasuser.BodyFat2 plots(only)=(cp); 
   model PctBodyFat2=Age Weight Height 
         Neck Chest Abdomen Hip Thigh 
         Knee Ankle Biceps Forearm Wrist 
         / selection=cp best=60; 
   title "Using Mallows Cp for Model Selection"; 
run; 
quit; 
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The plot indicates that the best model according to Mallows’ criterion is an eight-parameter 
(seven variables plus an intercept) model. The best model according to Hocking’s criterion 
has 10 parameters (including the intercept). 

A partial table of the 60 models, their C(p) values, and the numbers of variables in the 
models is displayed. 
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 Number in Model does not include the intercept in this table. 

The best MALLOWS model is either the eight-parameter models, number 1 (includes the 
variables Age, Weight, Neck, Abdomen, Thigh, Forearm, and Wrist) or number 5 (includes 
the variables Age, Weight, Neck, Abdomen, Biceps, Forearm, and Wrist). 

The best HOCKING model is number 4. It includes Hip, along with the variables in the best 
MALLOWS models listed above. 

b.   Use a stepwise regression method to select a candidate model. Try FORWARD, STEPWISE, and 
BACKWARD. 
/*st103s04.sas*/  /*Part B*/ 
proc reg data=sasuser.BodyFat2 plots(only)=adjrsq; 
   FORWARD:  model PctBodyFat2=Age Weight Height 
             Neck Chest Abdomen Hip Thigh 
             Knee Ankle Biceps Forearm Wrist 
             / selection=forward; 
   BACKWARD: model PctBodyFat2=Age Weight Height 
             Neck Chest Abdomen Hip Thigh 
             Knee Ankle Biceps Forearm Wrist 
             / selection=backward; 
   STEPWISE: model PctBodyFat2=Age Weight Height 
             Neck Chest Abdomen Hip Thigh 
             Knee Ankle Biceps Forearm Wrist 
             / selection=stepwise; 
   title "Using Stepwise Methods for Model Selection"; 
run; 
quit; 
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Partial Output 
Forward Selection: Step 10 

Variable Ankle Entered: R-Square = 0.7485 and C(p) = 8.0682 
Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 
Model 10 13158 1315.76595 71.72 <.0001 
Error 241 4421.33035 18.34577   
Corrected Total 251 17579    

 

Variable 
Parameter 

Estimate 
Standard 

Error Type II SS F Value Pr > F 
Intercept -25.99962 12.15316 83.96376 4.58 0.0334 
Age 0.06509 0.03092 81.31425 4.43 0.0363 
Weight -0.10740 0.04207 119.56769 6.52 0.0113 
Neck -0.46749 0.22812 77.05006 4.20 0.0415 
Abdomen 0.95772 0.07276 3178.52750 173.26 <.0001 
Hip -0.17912 0.13908 30.42960 1.66 0.1990 
Thigh 0.25926 0.13389 68.78441 3.75 0.0540 
Ankle 0.18453 0.21686 13.28232 0.72 0.3957 
Biceps 0.18617 0.16858 22.37399 1.22 0.2705 
Forearm 0.45303 0.19593 98.08072 5.35 0.0216 
Wrist -1.65666 0.52706 181.25142 9.88 0.0019 

Bounds on condition number: 20.913, 668.17 

No other variable met the 0.5000 significance level for entry into the model. 
Summary of Forward Selection 

Step 
Variable 
Entered 

Number 
Vars In 

Partial 
R-Square 

Model 
R-Square C(p) F Value Pr > F 

1 Abdomen 1 0.6617 0.6617 72.2434 488.93 <.0001 
2 Weight 2 0.0571 0.7188 20.1709 50.58 <.0001 
3 Wrist 3 0.0089 0.7277 13.7069 8.15 0.0047 
4 Forearm 4 0.0073 0.7350 8.8244 6.78 0.0098 
5 Neck 5 0.0029 0.7379 8.0748 2.73 0.1000 
6 Age 6 0.0027 0.7406 7.4937 2.58 0.1098 
7 Thigh 7 0.0038 0.7445 5.8653 3.66 0.0569 
8 Hip 8 0.0021 0.7466 5.8986 1.99 0.1594 
9 Biceps 9 0.0012 0.7477 6.7834 1.13 0.2888 

10 Ankle 10 0.0008 0.7485 8.0682 0.72 0.3957 
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The FORWARD final model is the same model as the best model using the HOCKING 
criterion plus Ankle (Abdomen, Weight, Wrist, Forearm, Neck, Age, Thigh, Hip, Biceps, 
and Ankle). The Criterion plot shows that the increase in adjusted R square is best for the 
model in Step 9. The increase is rather modest after about Step 4. 

Backward Elimination: Step 6 

Variable Hip Removed: R-Square = 0.7445 and C(p) = 5.8653 
Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 
Model 7 13087 1869.59160 101.56 <.0001 
Error 244 4491.84861 18.40922   
Corrected Total 251 17579    
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Variable 
Parameter 

Estimate 
Standard 

Error Type II SS F Value Pr > F 
Intercept -33.25799 9.00681 251.00658 13.63 0.0003 
Age 0.06817 0.03079 90.22018 4.90 0.0278 
Weight -0.11944 0.03403 226.84802 12.32 0.0005 
Neck -0.40380 0.22062 61.67131 3.35 0.0684 
Abdomen 0.91788 0.06950 3211.14250 174.43 <.0001 
Thigh 0.22196 0.11601 67.38659 3.66 0.0569 
Forearm 0.55314 0.18479 164.95134 8.96 0.0030 
Wrist -1.53240 0.51041 165.93323 9.01 0.0030 

Bounds on condition number: 13.634, 261.24 

All variables left in the model are significant at the 0.1000 level. 
Summary of Backward Elimination 

Step 
Variable 
Removed 

Number 
Vars In 

Partial 
R-Square 

Model 
R-Square C(p) F Value Pr > F 

1 Knee 12 0.0000 0.7486 12.0032 0.00 0.9552 
2 Chest 11 0.0000 0.7485 10.0313 0.03 0.8666 
3 Height 10 0.0000 0.7485 8.0682 0.04 0.8473 
4 Ankle 9 0.0008 0.7477 6.7834 0.72 0.3957 
5 Biceps 8 0.0012 0.7466 5.8986 1.13 0.2888 
6 Hip 7 0.0021 0.7445 5.8653 1.99 0.1594 
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The final model using the BACKWARD option is the same model as the one suggested by 
Mallows’ criterion (Age, Weight, Neck, Abdomen, Thigh, Forearm, and Wrist). 

The Criterion plot shows that the adjusted R square was best at Step 4. Be careful not to 
over-interpret this difference. The Y-axis only ranges from approximately 0.7360 to 0.7385. 
The differences are all minor. 

Stepwise Selection: Step 7 

Variable Thigh Entered: R-Square = 0.7445 and C(p) = 5.8653 
Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 
Model 7 13087 1869.59160 101.56 <.0001 
Error 244 4491.84861 18.40922   
Corrected Total 251 17579    
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Variable 
Parameter 

Estimate 
Standard 

Error Type II SS F Value Pr > F 
Intercept -33.25799 9.00681 251.00658 13.63 0.0003 
Age 0.06817 0.03079 90.22018 4.90 0.0278 
Weight -0.11944 0.03403 226.84802 12.32 0.0005 
Neck -0.40380 0.22062 61.67131 3.35 0.0684 
Abdomen 0.91788 0.06950 3211.14250 174.43 <.0001 
Thigh 0.22196 0.11601 67.38659 3.66 0.0569 
Forearm 0.55314 0.18479 164.95134 8.96 0.0030 
Wrist -1.53240 0.51041 165.93323 9.01 0.0030 

Bounds on condition number: 13.634, 261.24 

All variables left in the model are significant at the 0.1500 level. 

No other variable met the 0.1500 significance level for entry into the model. 
Summary of Stepwise Selection 

Step 
Variable 
Entered 

Variable 
Removed 

Number 
Vars In 

Partial 
R-Square 

Model 
R-Square C(p) F Value Pr > F 

1 Abdomen  1 0.6617 0.6617 72.2434 488.93 <.0001 
2 Weight  2 0.0571 0.7188 20.1709 50.58 <.0001 
3 Wrist  3 0.0089 0.7277 13.7069 8.15 0.0047 
4 Forearm  4 0.0073 0.7350 8.8244 6.78 0.0098 
5 Neck  5 0.0029 0.7379 8.0748 2.73 0.1000 
6 Age  6 0.0027 0.7406 7.4937 2.58 0.1098 
7 Thigh  7 0.0038 0.7445 5.8653 3.66 0.0569 
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The model using the STEPWISE option results in the same model as that using the 
BACKWARD option (Age, Weight, Neck, Abdomen, Thigh, Forearm, and Wrist). 

c.   How many variables would result from a model using FORWARD selection and a significance 
level for entry criterion of 0.05, instead of the default SLENTRY of 0.50? 
/*st103s04.sas*/  /*Part C*/ 
proc reg data=sasuser.BodyFat2 plots(only)=adjrsq; 
   FORWARD05:model PctBodyFat2=Age Weight Height 
             Neck Chest Abdomen Hip Thigh 
             Knee Ankle Biceps Forearm Wrist 
             / selection=forward slentry=0.05; 
   title "Using Forward Stepwise with SLENTRY=0.05"; 
run; 
quit; 
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Partial Output 

Forward Selection: Step 4 

Variable Forearm Entered: R-Square = 0.7350 and C(p) = 8.8244 
Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 
Model 4 12921 3230.18852 171.28 <.0001 
Error 247 4658.23577 18.85925   
Corrected Total 251 17579    

 

Variable 
Parameter 

Estimate 
Standard 

Error Type II SS F Value Pr > F 
Intercept -34.85407 7.24500 436.46987 23.14 <.0001 
Weight -0.13563 0.02475 566.43299 30.03 <.0001 
Abdomen 0.99575 0.05607 5948.85562 315.43 <.0001 
Forearm 0.47293 0.18166 127.81846 6.78 0.0098 
Wrist -1.50556 0.44267 218.15750 11.57 0.0008 

Bounds on condition number: 7.0408, 63.886 

No other variable met the 0.0500 significance level for entry into the model. 
Summary of Forward Selection 

Step 
Variable 
Entered 

Number 
Vars In 

Partial 
R-Square 

Model 
R-Square C(p) F Value Pr > F 

1 Abdomen 1 0.6617 0.6617 72.2434 488.93 <.0001 
2 Weight 2 0.0571 0.7188 20.1709 50.58 <.0001 
3 Wrist 3 0.0089 0.7277 13.7069 8.15 0.0047 
4 Forearm 4 0.0073 0.7350 8.8244 6.78 0.0098 
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The model using SLENTRY=0.05 has substantially fewer (4) variables than the default 
SELECTION=FORWARD final model (Weight, Abdomen, Forearm, and Wrist). 

The Criterion plot, showing adjusted R square at each step, is also produced. 
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Solutions to Student Activities (Polls/Quizzes) 

26

3.01 Multiple Choice Poll – Correct Answer
The correlation between tuition and rate of graduation 
at U.S. colleges is 0.55. What does this mean?
a. The way to increase graduation rates at your college 

is to raise tuition.
b. Increasing graduation rates is expensive, causing 

tuition to rise.
c. Students who are richer tend to graduate more often 

than poorer students.
d. None of the above.

2 6  

42

3.02 Multiple Choice Poll – Correct Answer
Run PROC REG with this MODEL statement: 
model y=x1;. If the parameter estimate (slope) of x1 is 
0, then the best guess (predicted value) of y when x1=13 
is which of the following?
a. 13
b. the mean of y
c. a random number
d. the mean of x1
e. 0

4 2  
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51

3.03 Multiple Choice Poll – Correct Answer
What is the predicted value for PctBodyFat2 when 
Weight is 150?

a. 0.17439
b. 150
c. 14.1067 

5 1  

61

3.04 Multiple Choice Poll – Correct Answer
Which statistic in the ANOVA table is used to test the 
overall model hypotheses?
a. F
b. t
c. R square
d. Adjusted R square

6 1  



 3.5  Solutions 3-123 

Copyright © 2012, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. 

74

3.05 Multiple Choice Poll – Correct Answer
When Oxygen_Consumption is regressed on RunTime, 
Age, Run_Pulse, and Maximum_Pulse, the parameter 
estimate for Age is -2.78. What does this mean?
a. For each year older, the predicted value of oxygen 

consumption is 2.78 greater.
b. For each year older, the predicted value of oxygen 

consumption is 2.78 lower.
c. For every 2.78 years older, oxygen consumption 

doubles.
d. For every 2.78 years younger, oxygen consumption 

doubles.
* Assume that the values of all other predictors are 

held constant.

7 4  

88

3.06 Multiple Choice Poll – Correct Answer
Which value tends to increase (can never decrease) as 
you add predictor variables to your regression model?
a. R square
b. Adjusted R square
c. Mallows’ Cp

d. Both a and b
e. F statistic
f. All of the above

8 8  
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122

3.07 Poll – Correct Answer
The STEPWISE, BACKWARD, and FORWARD 
strategies result in the same final model if the same 
significance levels are used in all three.

 True
 False

1 2 2  
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