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4.1 Examining Residuals 

3

Objectives
 Review the assumptions of linear regression.
 Examine the assumptions with scatter plots and 

residual plots.

 

4

Assumptions for Regression

4

Unknown 
Relationship
Y = β0 + β1X

 
Recall that the model for the linear regression has the form Y=β0+β1X+ε. When you perform a regression 
analysis, several assumptions about the error terms must be met to provide valid tests of hypothesis and 
confidence intervals. The assumptions are that the error terms 
• have a mean of 0 at each value of the predictor variable 
• are normally distributed at each value of the predictor variable 
• have the same variance at each value of the predictor variable 
• are independent. 
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6

4.01 Poll
Predictor variables are assumed to be normally 
distributed in linear regression models.
 True
 False

6  

8

Scatter Plot of Correct Model

Y = 3.0 + 0.5X
R2 = 0.67

8  
To illustrate the importance of plotting data, four examples were developed by Anscombe (1973).  
In each example, the scatter plot of the data values is different. However, the regression equation  
and the R-square statistic are the same. 

In the first plot, a regression line adequately describes the data. 
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9

Scatter Plot of Curvilinear Model

Y = 3.0 + 0.5X
R2 = 0.67

9  
In the second plot, a simple linear regression model is not appropriate because you are fitting a straight 
line through a curvilinear relationship. 

10

Scatter Plot of Outlier Model

Y = 3.0 + 0.5X
R2 = 0.67

1 0  
In the third plot, there seems to be an outlying data value that is affecting the regression line. This outlier 
is an influential data value in that it is substantially changing the fit of the regression line. 
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11

Scatter Plot of Influential Model

Y = 3.0 + 0.5X
R2 = 0.67

1 1  
In the fourth plot, the outlying data point dramatically changes the fit of the regression line. In fact,  
the slope would be undefined without the outlier. 

The four plots illustrate that relying on the regression output to describe the relationship between your 
variables can be misleading. The regression equations and the R-square statistics are the same even 
though the relationships between the two variables are different. Always produce a scatter plot before  
you conduct a regression analysis. 
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12

Verifying Assumptions

1 2  
To verify the assumptions for regression, you can use the residual values from the regression analysis as 
your best estimates of the error terms. Residuals are defined as follows: 

iii
YYr ˆ−=  

where 
i

Ŷ  is the predicted value for the ith value of the dependent variable. 

You can examine two types of plots when verifying assumptions: 
• the residuals versus the predicted values 
• the residuals versus the values of the independent variables 
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13

Examining Residual Plots

 

  

 

 
The graphs above are plots of residual values versus predicted values or predictor variable values for  
four models fit to different sets of data. If model assumptions are valid, then the residual values should  
be randomly scattered about a reference line at 0. Any patterns or trends in the residuals might indicate 
problems in the model. 

1. The model form appears to be adequate because the residuals are randomly scattered about  
a reference line at 0 and no patterns appear in the residual values. 

2. The model form is incorrect. The plot indicates that the model should take into account curvature  
in the data. One possible solution is to add a quadratic term as one of the predictor variables. 

3. The variance is not constant. As you move from left to right, the variance increases. One possible 
solution is to transform your dependent variable. Another possible solution is to use either  
PROC GENMOD or PROC GLIMMIX, and choose a model that does not assume equal variances. 

4. The observations are not independent. For this graph, the residuals tend to be followed by residuals 
with the same sign, which is called autocorrelation. This problem can occur when you have 
observations that were collected over time. A possible solution is to use the AUTOREG procedure  
in SAS/ETS software. 
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14

Detecting Outliers

1 4  
Besides verifying assumptions, it is also important to check for outliers. Observations that are far away 
from the bulk of your data are outliers. These observations are often data errors or reflect unusual 
circumstances. In either case, it is good statistical practice to detect these outliers and find out why they 
occurred. 
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Residual Plots 
 

Example: Invoke the REG procedure noticing the default graphics. Then use a PLOTS= option to 
produce full-sized ODS residual plots and diagnostic plots for the PREDICT model generated 
in the previous chapter. 

/*st104d01.sas*/  /*Part A*/ 
proc reg data=sasuser.fitness; 
   PREDICT: model Oxygen_Consumption= 
                  RunTime Age Run_Pulse Maximum_pulse; 
   id Name; 
   title 'PREDICT Model - Plots of Diagnostic Statistics'; 
run; 
quit; 

The default graphs are shown below. 

Partial Output 
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Residual and diagnostic plots are produced in the DIAGNOSTICS panel plot. (Several of these are 
discussed in more detail later in the chapter.) 

 
The plot of the residuals versus the values of the independent variables, Runtime, Age, Run_Pulse, and 
Maximum_Pulse, is shown above. They show no obvious trends or patterns in the residuals. Recall that 
independence of residual errors (no trends) is an assumption for linear regression, as is constant variance 
across all levels of all predictor variables (and across all levels of the predicted values, which is seen 
earlier). 

 When visually inspecting residual plots, the distinction of whether a pattern exists  
is to the discretion of the viewer. If there is any question to the presence of a pattern,  
a further investigation for possible causes of potential patterns should be performed. 
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Hint: If you want to view the DIAGNOSTICS panel plots separately, specify 
PLOTS=DIAGNOSTICS(UNPACK) in the PROC REG statement. You can also specify each plot 
individually by name. Individual plots are produced full sized. 

/*st104d01.sas*/  /*Part B*/ 
proc reg data=sasuser.fitness  
         plots(only)=(QQ RESIDUALBYPREDICTED RESIDUALS); 
   PREDICT: model Oxygen_Consumption= 
                  RunTime Age Run_Pulse Maximum_pulse; 
   id Name; 
   title 'PREDICT Model - Plots of Diagnostic Statistics'; 
run; 
quit; 

Selected REG statement PLOTS= options: 

PLOTS(ONLY)= produces only the plots listed and suppresses printing of default plots. 

QQ produces residual Quantile-Quantile plot to assess the normality  
of the residual error. 

RESIDUALBYPREDICTED produces residuals by predicted values. 

RESIDUALS produces residuals by predictor variable values. 

 You can also use the R option in the MODEL statement of PROC REG to obtain residual 
diagnostics. Output from the R option includes the values of the response variable, the predicted 
values of the response variable, the standard error of the predicted values, the residuals,  
the standard error of the residuals, the student residuals, and a summary of the student residuals  
in tabular rather than graphic form. The R option is used in the next section. 



4-12 Chapter 4  Regression Diagnostics 

Copyright © 2012, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. 

The plots of the residuals by predicted values of Oxygen_Consumption and by each of the predictor 
variables are shown below. The residual values appear to be randomly scattered about the reference line  
at 0. There are no apparent trends or patterns in the residuals. 
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The plot of the residuals against the normal quantiles is shown below. If the residuals are normally 
distributed, the plot should appear to be a straight, diagonal line. If the plot deviates substantially from  
the reference line, then there is evidence against normality. 

The plot below shows little deviation from the expected pattern. Thus, you can conclude that the residuals 
do not significantly violate the normality assumption. If the residuals did violate the normality 
assumption, then a transformation of the response variable or a different model might be warranted. 

PROC REG Output (Continued) 

 

 You can use the NORMAL option in the UNIVARIATE procedure to generate a hypothesis test 
on whether the residuals are normally distributed. This could be necessary if you feel that the plot 
above shows a violation of the normality assumption. First you must create an output data set 
with the residuals in PROC REG using an OUTPUT statement (as shown in Chapter 2 with an 
OUTPUT statement in the GLM procedure) or in the Output Delivery System. Then use that data 
set as the input data set in PROC UNIVARIATE. Recall that these tests of normality are 
extremely sensitive to sample sizes. 



 4.1  Examining Residuals 4-15 

Copyright © 2012, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. 

Exercises 
 

1.   Examining Residuals 

Assess the model obtained from the final forward stepwise selection of predictors for the 
sasuser.BodyFat2 data set. Run a regression of PctBodyFat2 on Abdomen, Weight, Wrist,  
and Forearm. Create plots of the residuals by the four regressors and by the predicted values  
and a normal Quantile-Quantile plot. 

a.   Do the residual plots indicate any problems with the constant variance assumption? 

b.   Are there any outliers indicated by the evidence in any of the residual plots? 

c.   Does the Quantile-Quantile plot indicate any problems with the normality assumption? 
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4.2 Influential Observations 

19

Objectives
 Use statistics to identify potentially influential 

observations.

1 9  

20

Influential Observations

2 0  
Recall in the previous section that you saw examples of data sets where the simple linear regression 
model fits were essentially the same. However, plotting the data revealed that the model fits were 
different. 

One of the examples showed a highly influential observation similar to the example above. 

Identifying influential observations in multiple linear regression is more complex because you have more 
predictors to consider. 

The REG procedure has options to calculate statistics to identify influential observations. 
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21

Diagnostic Statistics
Statistics that help identify influential observations 
are the following:
 Studentized residuals
 RSTUDENT residuals
 Cook’s D
 DFFITS
 DFBETAS

2 1  
The R option in the MODEL statement prints the studentized residuals and the Cook’s D, as well as  
others discussed previously. The INFLUENCE option in the MODEL statement prints the RSTUDENT, 
DFFITS, and DFBETAS, as well as several others. 
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22

Studentized (Standardized) Residuals
Studentized residuals (SR) are obtained by dividing the 
residuals by their standard errors.
Suggested cutoffs are as follows:
 |SR| > 2 for data sets with a relatively small number 

of observations
 |SR| > 3 for data sets with a relatively large number 

of observations

2 2  
One way to check for outliers is to use the studentized residuals. These are calculated by dividing  
the residual values by their standard errors. For a model that fits the data well and has no outliers, most  
of the studentized residuals should be close to 0. In general, studentized residuals that have an absolute 
value less than 2.0 could easily occur by chance. Studentized residuals that are between an absolute value 
of 2.0 to 3.0 occur infrequently and could be outliers. Studentized residuals that are larger than an 
absolute value of 3.0 occur rarely by chance alone and should be investigated. 

 Studentized residuals are often referred to as “standardized residuals.” The cutoff values are 
chosen based on the tail probabilities from the normal probability distribution that you learned 
about in Chapter 1. 

24

4.02 Multiple Choice Poll
Given the properties of the standard normal distribution, 
you would expect about 95% of the studentized residuals 
to be between which two values?
a. -3 and 3
b. -2 and 2
c. -1 and 1
d. 0 and 1
e. 0 and 2
f. 0 and 3

2 4  
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26

RSTUDENT

2 6  
Studentized residuals are the ordinary residuals divided by their standard errors. The RSTUDENT 
residuals are similar to the studentized residuals except that they are calculated after deleting the ith 
observation. In other words, the RSTUDENT residual is the difference between the observed Y  
and the predicted value of Y excluding this observation from the regression. 

 There is a difference between the labels used in SAS and in SAS Enterprise Guide. 

SAS  SAS Enterprise Guide 

Studentized residuals  Standardized residuals 

RSTUDENT residuals (studentized 
residual with the ith observation removed) 

 Studentized residuals 
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27

Cook’s D Statistic
Cook’s D statistic is a measure of the simultaneous 
change in the parameter estimates when the ith 

observation is deleted from the analysis.

A suggested cutpoint for influence is shown below:

4 
n

iCook's D   >

 
To detect influential observations, you can use Cook’s D statistic. This statistic measures the change  
in the parameter estimates that results from deleting each observation. 

( ) ( )( )i 2

1Cook's D  = -
ps

  ′ ′ 
 

(i) (i)b - b X X b b  

p the number of regression parameters 

s2 mean squared error of the regression model 

b the vector of parameter estimates 

b(i) the vector of parameter estimates obtained after deleting the ith observation 

X’X corrected sum of squares and cross-products matrix 

Identify observations above the cutoff and investigate the reasons that they occurred. 
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28

DFFITS
DFFITSi measures the impact that the ith observation 
has on the predicted value.

A suggested cutoff for influence is shown below: 

2 8

2 p
ni| DFFITS | > 

 

( )
ˆ ˆ

DFFITS ˆ( )
i i

i
i

Y Y
s Y
−

=  

iŶ  the ith predicted value 

)(̂iY  the ith predicted value when the ith observation is deleted 

)ˆ( iYs  the standard error of the ith predicted value 

Belsey, Kuh, and Welsch (1980) provide this suggested cutoff: |DFFITSi|>2
n
p

, where p is the number 

of terms in the current model, including the intercept, and n is the sample size.  
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29

DFBETAS
 Measure of change in the jth parameter estimate 

with deletion of the ith observation
 One DFBETA per parameter per observation
 Helpful in explaining on which parameter coefficient 

the influence most lies

A suggested cutoff for influence is shown below: 

2 9

12
n

ij| DFBETA | > 

 
DFBETAS is abbreviated from Difference in Betas. They contain the standardized difference for each 
individual coefficient estimate resulting from the omission of the ith observation. They are identified  
by column headings with the name of the corresponding predictor in the Output window and also  
by plots, if requested in the PROC REG statement. Because there are many DFBETAS, it might be useful 
to examine only those corresponding to a large Cook’s D. Large DFBETAS indicate which predictor(s) 
might be the cause of the influence. 

( )
ijDFBETA  = 

( )
j i j

j

b b
s b
−

 

bj jth regression parameter estimate 

b(i)j jth regression parameter estimate with observation i deleted 

s(bj) standard error of bj 

Belsley, Kuh, and Welsch (1980) recommend 2 as a general cutoff value to indicate influential 

observations and 2
1
n

as a size-adjusted cutoff. 
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Looking for Influential Observations 
 

Example: Generate the RStudent, DFFITS, DFBETAS, and Cook’s D influence statistics and plots for 
the PREDICT model. Save the statistics to an output data set and create a data set with only 
observations that exceed the suggested cutoffs of the influence statistics. 

/*st104d02.sas*/  /*Part A*/ 
ods output RSTUDENTBYPREDICTED=Rstud 
           COOKSDPLOT=Cook 
           DFFITSPLOT=Dffits 
           DFBETASPANEL=Dfbs; 
 
proc reg data=sasuser.fitness  
         plots(only label)= 
              (RSTUDENTBYPREDICTED  
               COOKSD  
               DFFITS  
               DFBETAS); 
   PREDICT: model Oxygen_Consumption= 
                  RunTime Age Run_Pulse Maximum_Pulse; 
   id Name; 
   title 'PREDICT Model - Plots of Diagnostic Statistics'; 
run; 
 
quit; 

The ID statement makes the Name variable available for labeling of observations in plots. 

Selected REG procedure PLOTS= options: 

PLOTS(LABEL)= labels extreme observations in the plot with either the observation 
number or the value of an ID variable, if there is an ID statement. 

RSTUDENTBYPREDICTED RStudent by predicted values. 

COOKSD Cook’s D plot. 

DFFITS DFFITS plot. 

DFBETAS DFBETAS plots. 
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The ODS OUTPUT statement along with the PLOTS= option outputs the data from the influence plots 
into separate data sets. 

PROC REG Output 
Number of Observations Read 31 
Number of Observations Used 31 

 
Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 
Model 4 711.45087 177.86272 33.01 <.0001 
Error 26 140.10368 5.38860   
Corrected Total 30 851.55455    

 
Root MSE 2.32134 R-Square 0.8355 
Dependent Mean 47.37581 Adj R-Sq 0.8102 
Coeff Var 4.89984   

 
Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 
Intercept 1 97.16952 11.65703 8.34 <.0001 
RunTime 1 -2.77576 0.34159 -8.13 <.0001 
Age 1 -0.18903 0.09439 -2.00 0.0557 
Run_Pulse 1 -0.34568 0.11820 -2.92 0.0071 
Maximum_Pulse 1 0.27188 0.13438 2.02 0.0534 
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Partial PROC REG Output (Continued) 

 
The RStudent plot shows two observations beyond two standard errors from the mean of 0. Those are 
identified as Sammy and Jack. Because you expect 5% of values to be beyond two standard errors from 
the mean (remember that RStudent residuals are assumed to be normally distributed), the fact that you 
have two that far outside the primary cluster gives no cause for concern. (Five percent of 31 is 1.55 
expected observations.) 

 William and Gracie are also labeled in this plot because they have the most extreme predicted 
values. (Their leverage values are extreme.) 



4-26 Chapter 4  Regression Diagnostics 

Copyright © 2012, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. 

 
The Cook’s D plot shows Gracie to be an influential point. 
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Gracie appears once again as an influential point based on her value on DFFITS. 

At this point, it might be helpful to see which parameters Gracie might influence most. DFBETAS 
provides that information. 
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Apparently, Gracie is influential because of her effects on the estimates of both Run_Pulse and 
Maximum_Pulse. 

Detection of outliers with plots is convenient for relatively small data sets, but for large data sets it can  
be very difficult to discern one observation from another. One method for extracting only the influential 
observations from a data set is to output the ODS plots data into data sets and then subset the influential 
observations. 

The next part of the program prints the influential observations in the influence diagnostic data sets that 
were produced using ODS OUTPUT. 
/*st104d02.sas*/  /*Part B*/ 
proc print data=Rstud; 
run; 
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Partial Output 
Obs Model Dependent RStudent PredictedValue outLevLabel Observation id1 

1 PREDICT Oxygen_Consumption 1.77178 55.9333  1 Donna 
2 PREDICT Oxygen_Consumption 1.35265 57.8362 Gracie 2 Gracie 
3 PREDICT Oxygen_Consumption -1.21790 56.7812  3 Luanne 
4 PREDICT Oxygen_Consumption -0.00041 54.6309  4 Mimi 

The variable outLevLabel is nonmissing only for an observation whose leverage was deemed high. 
proc print data=Cook; 
run; 

Partial Output 
Obs Model Dependent CooksD Observation CooksDLabel id1 

1 PREDICT Oxygen_Consumption 0.10546 1  Donna 
2 PREDICT Oxygen_Consumption 0.33051 2 Gracie Gracie 
3 PREDICT Oxygen_Consumption 0.07999 3  Luanne 
4 PREDICT Oxygen_Consumption 0.00000 4  Mimi 

The variable CooksDLabel identifies observations that are deemed influential due to high  
Cook’s D values. 
proc print data=Dffits; 
run; 

Partial Output 
Obs Model Dependent Observation DFFITS id1 DFFITSOUT 

1 PREDICT Oxygen_Consumption 1 0.75543 Donna . 
2 PREDICT Oxygen_Consumption 2 . Gracie 1.30587 
3 PREDICT Oxygen_Consumption 3 -0.63826 Luanne . 
4 PREDICT Oxygen_Consumption 4 -0.00022 Mimi . 

The variable DFFITSOUT identifies observations that are deemed influential due to high DFFITS 
values. 
proc print data=Dfbs; 
run; 

Partial Output 
Obs Model Dependent Observation _DFBETAS1 id1 _DFBETASOUT1 _DFBETAS2 

1 PREDICT Oxygen_Consumption 1 0.32241 Donna . . 
2 PREDICT Oxygen_Consumption 2 -0.25010 Gracie . -0.22777 
3 PREDICT Oxygen_Consumption 3 -0.21273 Luanne . 0.12802 
4 PREDICT Oxygen_Consumption 4 -0.00012 Mimi . 0.00004 

The variables _DFBETASOUT1 through _DFBETASOUT5 identify the observations whose DFBETA 
values exceed the threshold for influence. _DFBETASOUT1 represents the value for the intercept.  
The other four variables show influential outliers on each of the predictor variables in the MODEL 
statement in PROC REG. 

 Use the optional DATA step to merge the results of the previous four data sets. 
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The next DATA step merges the four data sets containing the influence data and outputs only  
the observations that exceeded the respective influence cutoff levels. 

The results are then displayed. 
data influential; 
/* Merge data sets from above. */ 
   merge Rstud 
         Cook 
         Dffits 
         Dfbs; 
   by observation; 
 
/* Flag observations that have exceeded at least one cutpoint; */ 
   if (RStudent>3) or (Cooksdlabel ne ' ') or Dffitsout then flag=1; 
   array dfbetas{*} _dfbetasout: ; 
   do i=2 to dim(dfbetas); 
       if dfbetas{i} then flag=1; 
   end; 
 
/* Set to missing values of influence statistics for those */ 
/* who have not exceeded cutpoints; */ 
   if RStudent<=3 then RStudent=.; 
   if Cooksdlabel eq ' ' then CooksD=.; 
 
/* Subset only observations that have been flagged. */ 
   if flag=1; 
   drop i flag; 
run; 
 
proc print data=influential; 
   id observation ID1; 
   var RStudent CooksD Dffitsout _dfbetasout:; 
run; 

PROC PRINT Output 
Observation id1 RStudent CooksD DFFITSOUT _DFBETASOUT1 _DFBETASOUT2 

1 Donna . . . . -0.48974 
2 Gracie . 0.33051 1.30587 . . 
3 Luanne . . . . . 

15 Sammy . . . . . 

 
Observation id1 _DFBETASOUT3 _DFBETASOUT4 _DFBETASOUT5 

1 Donna . . . 
2 Gracie . -0.96166 1.02693 
3 Luanne . 0.40836 . 

15 Sammy 0.54012 . . 

This table is a summary of the plots displayed previously. Gracie appears again as the sole influential 
outlier based on Cook’s D and DFFITS. No observation had an RStudent value greater than 3. Donna, 
Luanne, and Sammy have some influence on one parameter value each. 
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31

How to Handle Influential Observations
1. Recheck the data to ensure that no transcription or 

data entry errors occurred.
2. If the data is valid, one possible explanation is that 

the model is not adequate.

 A model with higher-order terms, such as polynomials 
and interactions between the variables, might be 
necessary to fit the data well.

3 1  
If the unusual data are erroneous, correct the errors and reanalyze the data. 

(In this course, time does not permit discussion of higher order models in any depth. This discussion  
is in Statistics 2: ANOVA and Regression.) 

Another possibility is that the observation, although valid, could be unusual. If you had a larger sample 
size, there might be more observations similar to the unusual ones. 

You might have to collect more data to confirm the relationship suggested by the influential observation. 

In general, do not exclude data. In many circumstances, some of the unusual observations contain 
important information. 

If you do choose to exclude some observations, include a description of the types of observations that you 
exclude and provide an explanation. Also discuss the limitation of your conclusions, given the exclusions, 
as part of your report or presentation. 
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Exercises 
 

2.   Generating Potential Outliers 

Using the sasuser.BodyFat2 data set, run a regression model of PctBodyFat2 on Abdomen, 
Weight, Wrist, and Forearm. 

a.   Use plots to identify potential influential observations based on the suggested cutoff values. 

b.   Output residuals to a data set, subset the data set by only those who are potentially influential 
outliers, and print the results. 

35

4.03 Multiple Choice Poll
How many observations did you find that might 
substantially influence parameter estimates?
a. 0
b. 1
c. 4
d. 5
e. 7
f. 10

3 5  
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4.3 Collinearity 

38

Objectives
 Determine whether collinearity exists in a model.
 Generate output to evaluate the strength of the 

collinearity and what variables are involved in the 
collinearity.

 Determine methods that can minimize collinearity 
in a model.

3 8  

39

Graphical Example of Collinearity

3 9  
In the Fitness data set example, RunTime and Oxygen_Consumption have a strong linear relationship. 
Similarly, Performance has a strong relationship with Oxygen_Consumption. 

The goal of multiple linear regression is to find a best fit plane through the data to predict 
Oxygen_Consumption. This perspective shows a very strong relationship between the predictor 
variables RunTime and Performance. You can picture that the prediction plane that you are trying  
to build is similar to a tabletop, where the observations guide the angle of the tabletop, relative to the 
floor, in the same way as the legs for the table. If the legs line up with one another, then the plane built  
on top of it tends to be unstable. 
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40

Illustration of Collinearity

4 0

Y

X2

X1

 
Here is another way of looking at the three dimensions of two predictor variables and a response variable. 
Where should the prediction plane be placed? The slopes of the prediction plane relative to each X and 
the Y are the parameter coefficient estimates. 

X1 and X2 almost follow a straight line, that is, X1=X2 in the (X1, X2) plane. 

Why is this a problem? Two reasons exist. 

1. Neither might appear to be significant when both are in the model. However, either might be 
significant when only one is in the model. Thus, collinearity can hide significant effects. (The reverse 
can be true as well. Collinearity can increase the apparent statistical significance of effects.) 

2. Collinearity tends to increase the variance of parameter estimates and consequently increase 
prediction error. 
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Illustration of Collinearity
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This is a representation of a best-fit plane through the data. 

42

Illustration of Collinearity
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However, the removal of only one data point (or only moving the data point) results in a very different 
prediction plane (as represented by the lighter plane). This illustrates the variability of the parameter 
estimates when there is extreme collinearity. 

When collinearity is a problem, the estimates of the coefficients are unstable. This means that they have  
a large variance. Consequently, the true relationship between Y and the Xs might be quite different from 
that suggested by the magnitude and sign of the coefficients. 

Collinearity is not a violation of the assumptions of linear regression. 
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Example of Collinearity 
 

Example: Generate a regression model with Oxygen_Consumption as the dependent variable and 
Performance, RunTime, Age, Weight, Run_Pulse, Rest_Pulse, and Maximum_Pulse  
as the independent variables. Compare this model with the PREDICT model from the previous 
section. 

/*st104d03.sas*/ 
ods graphics off; 
proc reg data=sasuser.fitness; 
   PREDICT: model Oxygen_Consumption= 
                  RunTime Age Run_Pulse Maximum_pulse; 
   FULLMODL: model Oxygen_Consumption= 
                   Performance Runtime Age Weight 
                   Run_Pulse Rest_Pulse Maximum_Pulse; 
run; 
quit; 
ods graphics on; 

PROC REG Output 

 
Model: PREDICT 

Dependent Variable: Oxygen_Consumption 

 
Number of Observations Read 31 
Number of Observations Used 31 

 
Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 
Model 4 711.45087 177.86272 33.01 <.0001 
Error 26 140.10368 5.38860   
Corrected Total 30 851.55455    

 
Root MSE 2.32134 R-Square 0.8355 
Dependent Mean 47.37581 Adj R-Sq 0.8102 
Coeff Var 4.89984   
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Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 
Intercept 1 97.16952 11.65703 8.34 <.0001 
RunTime 1 -2.77576 0.34159 -8.13 <.0001 
Age 1 -0.18903 0.09439 -2.00 0.0557 
Run_Pulse 1 -0.34568 0.11820 -2.92 0.0071 
Maximum_Pulse 1 0.27188 0.13438 2.02 0.0534 

For the PREDICT model, the model R square is large, the p-value for the overall test of the model  
is small, and none of the p-values is greater than 0.0557. 

 
Model: FULLMODL 

Dependent Variable: Oxygen_Consumption 

 
Number of Observations Read 31 
Number of Observations Used 31 

 
Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 
Model 7 722.66124 103.23732 18.42 <.0001 
Error 23 128.89331 5.60406   
Corrected Total 30 851.55455    

 
Root MSE 2.36729 R-Square 0.8486 
Dependent Mean 47.37581 Adj R-Sq 0.8026 
Coeff Var 4.99683   

 
Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 
Intercept 1 131.78249 72.20754 1.83 0.0810 
Performance 1 -0.12619 0.30097 -0.42 0.6789 
RunTime 1 -3.86019 2.93659 -1.31 0.2016 
Age 1 -0.46082 0.58660 -0.79 0.4401 
Weight 1 -0.05812 0.06892 -0.84 0.4078 
Run_Pulse 1 -0.36207 0.12324 -2.94 0.0074 
Rest_Pulse 1 -0.01512 0.06817 -0.22 0.8264 
Maximum_Pulse 1 0.30102 0.13981 2.15 0.0420 
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For the full model, Model F is highly significant and the R square is large. These statistics suggest that  
the model fits the data well. 

However, when you examine the p-values of the parameters, only Run_Pulse and Maximum_Pulse are 
statistically significant. 

When you produced the correlation information between your predictors and the response, Runtime was 
ranked first with the strongest correlation to Oxygen_Consumption. You also saw that in a simple linear 
regression containing only Runtime, it was classified a significant predictor variable. This significance 
continued in the PREDICT model that included Runtime. However, in the full model, this same variable 
is not statistically significant (p-value=0.2016). The p-value for Age changed from 0.0557 to 0.4401 
between the PREDICT model and the FULL model. 

When you have a highly significant Model F but no (or few) highly significant terms, collinearity  
is a potential cause. 

45

4.04 Multiple Choice Poll
Which of the following assumptions does collinearity 
violate?
a. Independent errors
b. Constant variance
c. Normally distributed errors
d. None of the above

4 5  
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Collinearity Diagnostics
PROC REG offers these tools that help quantify the 
magnitude of the collinearity problems and identify 
the subset of Xs that is collinear: 
 VIF
 COLLIN
 COLLINOINT

This course focuses on VIF.

4 7  
Selected MODEL statement options: 

VIF provides a measure of the magnitude of the collinearity (Variance Inflation Factor). 

COLLIN includes the intercept vector when analyzing the X′X matrix for collinearity. 

COLLINOINT excludes the intercept vector when analyzing the X′X matrix for collinearity. 

Two options, COLLIN and COLLINOINT, also provide a measure of the magnitude of the problem  
as well as give information that can be used to identify the sets of Xs that are the source of the problem. 

(COLLIN and COLLINOINT diagnostics are described in Statistics 2: ANOVA and Regression.) 
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Variance Inflation Factor (VIF)
The VIF is a relative measure of the increase in the 
variance because of collinearity. It can be thought 
of as this ratio:

A VIFi > 10 indicates that collinearity is a problem.

4 8

1

1 – Ri
2

VIFi =

 
You can calculate a VIF for each term in the model. 

Marquardt (1990) suggests that a VIF > 10 indicates the presence of strong collinearity in the model. 

VIFi=1/(1−Ri
2), where Ri

2 is the R square of Xi, regressed on all the other Xs in the model. 

For example, consider the model Y=X1 X2 X3 X4, i=1 to 4. 

To calculate the R square for X3, fit the model X3=X1 X2 X4. Take the R square from the model with X3 
as the dependent variable and replace it in the formula: VIF3=1/(1−R3

2). If VIF3 is greater than 10, X3 is 
possibly involved in collinearity. 
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Collinearity Diagnostics 
 

Example: Invoke PROC REG and use the VIF option to assess the magnitude of the collinearity problem 
and identify the terms involved in the problem. 

/*st104d04.sas*/  /*Part A*/ 
ods graphics off; 
proc reg data=sasuser.fitness; 
   FULLMODL: model Oxygen_Consumption= 
                   Performance RunTime Age Weight 
                   Run_Pulse Rest_Pulse Maximum_Pulse 
                   / vif; 
   title 'Collinearity -- Full Model'; 
run; 
quit; 
ods graphics on; 

Partial PROC REG Output 
Number of Observations Read 31 
Number of Observations Used 31 

 
Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 
Model 7 722.66124 103.23732 18.42 <.0001 
Error 23 128.89331 5.60406   
Corrected Total 30 851.55455    

 
Root MSE 2.36729 R-Square 0.8486 
Dependent Mean 47.37581 Adj R-Sq 0.8026 
Coeff Var 4.99683   

 
Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 
Variance 
Inflation 

Intercept 1 131.78249 72.20754 1.83 0.0810 0 
Performance 1 -0.12619 0.30097 -0.42 0.6789 162.85399 
RunTime 1 -3.86019 2.93659 -1.31 0.2016 88.86251 
Age 1 -0.46082 0.58660 -0.79 0.4401 51.01176 
Weight 1 -0.05812 0.06892 -0.84 0.4078 1.76383 
Run_Pulse 1 -0.36207 0.12324 -2.94 0.0074 8.54498 
Rest_Pulse 1 -0.01512 0.06817 -0.22 0.8264 1.44425 
Maximum_Pulse 1 0.30102 0.13981 2.15 0.0420 8.78755 
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Some of the VIFs are much larger than 10. A severe collinearity problem is present. At this point there are 
many ways to proceed. However, it is always a good idea to use some subject-matter expertise. For 
example, a quick conversation with the analyst and a view of the data-coding scheme revealed this bit  
of information. 

Partial Code 
data sasuser.fitness; 
   input @1 Name $8. @10 Gender $1. @12 RunTime 5.2 @18 Age 2. @21  
         Weight 5.2 
         @27 Oxygen_Consumption 5.2 @33 Run_Pulse 3. 
         @37 Rest_Pulse 2. @40 Maximum_Pulse 3.; 
   Performance=260-round(10*runtime + 2*Age + 4*(Gender='F')); 
   datalines; 
... 
run; 

The variable Performance was not a measured variable. The researchers, on the basis of prior literature, 
created a summary variable, which is a weighted function of the three variables, RunTime, Age, and 
Gender. This is not at all an uncommon occurrence and illustrates an important point. If a summary 
variable is included in a model along with some or all of its composite measures, there is bound to be 
collinearity. In fact, this can be the source of great problems. 

If the composite variable has meaning, it can be used as a stand-in measure for all three composite scores 
and you can remove the variables RunTime and Age from the analysis. 

Summary measures have the disadvantage of losing some information about the individual variables.  
If this is of concern, then remove Performance from the analysis. 

A decision was made to remove Performance from the analysis. Another check of collinearity  
is warranted. 
/*st104d04.sas*/  /*Part B*/ 
ods graphics off; 
proc reg data=sasuser.fitness; 
   NOPERF: model Oxygen_Consumption= 
                 RunTime Age Weight 
                 Run_Pulse Rest_Pulse Maximum_Pulse 
                 / vif; 
   title 'Dealing with Collinearity'; 
run; 
quit; 
ods graphics on; 
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PROC REG Output 
Number of Observations Read 31 
Number of Observations Used 31 

 
Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 
Model 6 721.67605 120.27934 22.23 <.0001 
Error 24 129.87851 5.41160   
Corrected Total 30 851.55455    

 
Root MSE 2.32629 R-Square 0.8475 
Dependent Mean 47.37581 Adj R-Sq 0.8094 
Coeff Var 4.91028   

 
Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 
Variance 
Inflation 

Intercept 1 101.96313 12.27174 8.31 <.0001 0 
RunTime 1 -2.63994 0.38532 -6.85 <.0001 1.58432 
Age 1 -0.21848 0.09850 -2.22 0.0363 1.48953 
Weight 1 -0.07503 0.05492 -1.37 0.1845 1.15973 
Run_Pulse 1 -0.36721 0.12050 -3.05 0.0055 8.46034 
Rest_Pulse 1 -0.01952 0.06619 -0.29 0.7706 1.41004 
Maximum_Pulse 1 0.30457 0.13714 2.22 0.0360 8.75535 

The greatest VIF values are much smaller now. The variables Maximum_Pulse and Run_Pulse are  
also collinear, but for a natural reason. The pulse at the end of a run is highly likely to correlate with  
the maximum pulse during the run. You might be tempted to remove one variable from the model, but  
the small p-values for each indicate that this would adversely affect the model. 
/*st104d04.sas*/  /*Part C*/ 
ods graphics off; 
proc reg data=sasuser.fitness; 
   NOPRFMAX: model Oxygen_Consumption= 
                   RunTime Age Weight 
                   Run_Pulse Rest_Pulse  
                   / vif; 
   title 'Dealing with Collinearity'; 
run; 
quit; 
ods graphics on; 
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PROC REG Output 
Number of Observations Read 31 
Number of Observations Used 31 

 
Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 
Model 5 694.98323 138.99665 22.19 <.0001 
Error 25 156.57132 6.26285   
Corrected Total 30 851.55455    

 
Root MSE 2.50257 R-Square 0.8161 
Dependent Mean 47.37581 Adj R-Sq 0.7794 
Coeff Var 5.28238   

 
Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 
Variance 
Inflation 

Intercept 1 115.46115 11.46893 10.07 <.0001 0 
RunTime 1 -2.71594 0.41288 -6.58 <.0001 1.57183 
Age 1 -0.27650 0.10217 -2.71 0.0121 1.38477 
Weight 1 -0.05300 0.05811 -0.91 0.3704 1.12190 
Run_Pulse 1 -0.12213 0.05207 -2.35 0.0272 1.36493 
Rest_Pulse 1 -0.02485 0.07116 -0.35 0.7298 1.40819 

With Maximum_Pulse removed, all of the VIF values are low, but the R square and Adjusted R square 
values were reduced and the p-value for Run_Pulse actually increased! 

Even with collinearity still present in the model, it might be advisable to keep the previous model 
including Maximum_Pulse. 

Collinearity can have a substantial effect on the outcome of a stepwise procedure for model selection. 
Because the significance of important variables can be masked by collinearity, the final model might not 
include very important variables. This is why it is advisable to deal with collinearity before using any 
automated model selection tool. 

 There are other approaches to dealing with collinearity. Two techniques are ridge regression and 
principal components regression. In addition, recentering the predictor variables can sometimes 
eliminate collinearity problems, especially in a polynomial regression and in ANCOVA models. 
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4.05 Poll
If there is no correlation among the predictor variables, 
can there still be collinearity in the model?
 Yes
 No

5 1  
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An Effective Modeling Cycle
(1) 

Preliminary 
Analysis

(2) 
Candidate

Model 
Selection

(6) 
Prediction

Testing

(5) 
Model

Revision
No

Yes

(4) 
Collinearity and

Influential Observation 
Detection

(3) 
Assumption
Validation

 
(1) Preliminary Analysis: This step includes the use of descriptive statistics, graphs, and correlation 

analysis. 

(2) Candidate Model Selection: This step uses the numerous selection options in PROC REG to identify 
one or more candidate models. 

(3) Assumption Validation: This step includes the plots of residuals and graphs of the residuals versus 
the predicted values. It also includes a test for equal variances. 

(4) Collinearity and Influential Observation Detection: The former includes the use of the VIF 
statistic, condition indices, and variation proportions; the latter includes the examination of R-Student 
residuals, Cook’s D statistic, and DFFITS statistics. 

(5) Model Revision: If steps (3) and (4) indicate the need for model revision, generate a new model  
by returning to these two steps. 

(6) Prediction Testing: If possible, validate the model with data not used to build the model. 
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Exercises 
 

3.   Assessing Collinearity 

Using the sasuser.BodyFat2 data set, run a regression of PctBodyFat2 on all the other numeric 
variables in the file. 

a.   Determine whether there is a collinearity problem. 

b.   If so, decide what you would like to do about that. Will you remove any variables?  
Why or why not? 
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4.4 Solutions 

Solutions to Exercises 
1.   Examining Residuals 

Assess the model obtained from the final forward stepwise selection of predictors for the 
sasuser.BodyFat2 data set. Run a regression of PctBodyFat2 on Abdomen, Weight, Wrist,  
and Forearm. Create plots of the residuals by the four regressors and by the predicted values and a 
normal Quantile-Quantile plot. 
/*st104s01.sas*/ 
ods graphics / imagemap=on; 
proc reg data=sasuser.BodyFat2  
         plots(only)=(QQ RESIDUALBYPREDICTED RESIDUALS); 
   FORWARD: model PctBodyFat2= 
                  Abdomen Weight Wrist Forearm; 
   id Case; 
   title 'FORWARD Model - Plots of Diagnostic Statistics'; 
run; 
quit; 

a.   Do the residual plots indicate any problems with the constant variance assumption? 
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It does not appear that the data violate the assumption of constant variance. Also, the 
residuals show nice random scatter and indicate no problem with model specification. 

b.   Are there any outliers indicated by the evidence in any of the residual plots? 

There are a few outliers for Wrist and Forearm and one clear outlier in each of Abdomen 
and Weight values. 
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c.   Does the Quantile-Quantile plot indicate any problems with the normality assumption? 

 
The normality assumption seems to be met. 

2.   Generating Potential Outliers 

Using the sasuser.BodyFat2 data set, run a regression model of PctBodyFat2 on Abdomen, Weight, 
Wrist, and Forearm.. 
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a.   Use plots to identify potential influential observations based on the suggested cutoff values. 
/*st104s02.sas*/  /*Part A*/ 
ods output RSTUDENTBYPREDICTED=Rstud 
           COOKSDPLOT=Cook 
           DFFITSPLOT=Dffits  
           DFBETASPANEL=Dfbs; 
proc reg data=sasuser.BodyFat2 
         plots(only label)= 
              (RSTUDENTBYPREDICTED 
               COOKSD 
               DFFITS 
               DFBETAS); 
   FORWARD: model PctBodyFat2= 
                  Abdomen Weight Wrist Forearm; 
   id Case; 
   title 'FORWARD Model - Plots of Diagnostic Statistics'; 
run; 
quit; 

 
There are only a modest number of observations farther than two standard error units from the 
mean of 0. 
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There are 10 labeled outliers, but observation 39 is clearly the most extreme. 
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The same observations are shown to be influential by the DFFITS statistic. 
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DFBETAS are particularly high for observation 39 on the parameters for weight and forearm 
circumference. 
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b.   Output residuals to a data set, subset the data set by only those who are potentially influential 
outliers, and print the results. 

/* st104s02.sas */  /* Part B */ 
data influential; 
/* Merge data sets from above. */ 
   merge Rstud 
         Cook  
         Dffits 
         Dfbs; 
   by observation; 
 
/* Flag observations that have exceeded at least one cutpoint; */ 
   if (Rstudent>3) or (Cooksdlabel ne ' ') or Dffitsout then flag=1; 
   array dfbetas{*} _dfbetasout: ; 
   do i=2 to dim(dfbetas); 
      if dfbetas{i} then flag=1; 
   end; 
 
/* Set to missing values of influence statistics for those */ 
/* who have not exceeded cutpoints; */ 
   if Rstudent<=3 then RStudent=.; 
   if Cooksdlabel eq ' ' then CooksD=.; 
 
/* Subset only observations that have been flagged. */ 
   if flag=1; 
   drop i flag; 
run; 
 
proc print data=influential; 
   id observation ID1; 
   var Rstudent CooksD Dffitsout _dfbetasout:; 
run; 
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Observation id1 RStudent CooksD DFFITSOUT 
_DFBETAS

OUT1 
_DFBETAS

OUT2 
_DFBETAS

OUT3 
_DFBETAS

OUT4 
_DFBETAS

OUT5 
3 3 . . . 0.17943 . . -0.12815 . 
9 9 . . . . 0.18911 -0.15600 . . 

12 12 . . . . 0.18169 -0.18076 . . 
17 17 . . . . . . -0.20902 . 
20 20 . . . . . -0.13786 0.13273 . 
22 22 . . . 0.22887 . . -0.14080 -0.16797 
25 25 . . . . -0.14080 . . . 
33 33 . . . . -0.12765 . . . 
39 39 . 0.49632 -1.59408 -0.41792 0.33576 -1.05761 0.13217 0.93125 
42 42 . . . . . . -0.13688 . 
55 55 . . . . . . -0.14907 . 
76 76 . . . . . . 0.13108 . 
80 80 . . . 0.17122 -0.17507 0.20391 -0.14744 . 
81 81 . 0.02858 0.38053 -0.22179 0.22631 -0.27484 0.26977 . 
82 82 . . . . . . . -0.16453 
84 84 . . . -0.14277 . -0.13915 0.20279 . 
95 95 . . . . . -0.13519 . . 

120 120 . . . . . 0.12609 . . 
127 127 . . . . . . -0.16625 0.13285 
128 128 . . . . -0.13838 . . . 
153 153 . . . . -0.17467 . . . 
159 159 . . . . . . . -0.13278 
175 175 . 0.02787 0.37296 . . . 0.14200 -0.35339 
192 192 . 0.01752 0.29750 . . . . . 
204 204 . . . . 0.13453 . . . 
206 206 . . . . . . . -0.17242 
207 207 . 0.01716 0.29490 . 0.16026 -0.13169 -0.15412 0.17410 
208 208 . . . . . . . 0.14747 
216 216 . . . . 0.21712 . . . 
221 221 . 0.03911 -0.44540 0.34282 -0.26106 0.39789 -0.24565 -0.18174 
225 225 . 0.02633 -0.36660 0.30270 -0.12914 0.23904 -0.19078 -0.20840 
238 238 . 0.01629 -0.28661 . -0.17388 . . . 
249 249 . 0.02463 0.35266 -0.23435 0.13125 -0.14344 0.28748 . 
250 250 . 0.03108 -0.39579 . -0.35320 0.21925 . . 
252 252 . . . -0.20349 . -0.12708 0.21088 . 

The same observations appear on this listing as in the plots. 

 Examine the values of observation 39 to see what is causing problems. You might find it 
interesting. 
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3.   Assessing Collinearity 

Using the sasuser.BodyFat2 data set, run a regression of PctBodyFat2 on all the other numeric 
variables in the file. 

a.   Determine whether there is a collinearity problem. 
/*st104s03.sas*/  /*Part A*/ 
ods graphics off; 
proc reg data=sasuser.BodyFat; 
   FULLMODL: model PctBodyFat2= 
                   Age Weight Height 
                   Neck Chest Abdomen Hip Thigh 
                   Knee Ankle Biceps Forearm Wrist 
                 / vif; 
   title 'Collinearity -- Full Model'; 
run; 
quit; 
ods graphics on; 

 
Number of Observations Read 252 
Number of Observations Used 252 

 
Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 
Model 13 13168 1012.88783 54.65 <.0001 
Error 238 4411.44804 18.53550   
Corrected Total 251 17579    

 
Root MSE 4.30529 R-Square 0.7490 
Dependent Mean 19.15079 Adj R-Sq 0.7353 
Coeff Var 22.48098   
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Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 
Variance 
Inflation 

Intercept 1 -18.18849 17.34857 -1.05 0.2955 0 
Age 1 0.06208 0.03235 1.92 0.0562 2.25045 
Weight 1 -0.08844 0.05353 -1.65 0.0998 33.50932 
Height 1 -0.06959 0.09601 -0.72 0.4693 1.67459 
Neck 1 -0.47060 0.23247 -2.02 0.0440 4.32446 
Chest 1 -0.02386 0.09915 -0.24 0.8100 9.46088 
Abdomen 1 0.95477 0.08645 11.04 <.0001 11.76707 
Hip 1 -0.20754 0.14591 -1.42 0.1562 14.79652 
Thigh 1 0.23610 0.14436 1.64 0.1033 7.77786 
Knee 1 0.01528 0.24198 0.06 0.9497 4.61215 
Ankle 1 0.17400 0.22147 0.79 0.4329 1.90796 
Biceps 1 0.18160 0.17113 1.06 0.2897 3.61974 
Forearm 1 0.45202 0.19913 2.27 0.0241 2.19249 
Wrist 1 -1.62064 0.53495 -3.03 0.0027 3.37751 

There seems to be high collinearity associated with Weight and less so with Hip, Abdomen, 
Chest, and Thigh. 

b.   If so, decide what you would like to do about that. Will you remove any variables? Why or why 
not? 

The answer is not so easy. True, Weight is collinear with some set of the other variables, but 
as you saw before in your model-building process, Weight actually is a relatively significant 
predictor in the “best” models. The answer is for a subject-matter expert to determine. 

If you want to remove Weight, simply run the model again without that variable. 
/*st104s03.sas*/  /*Part B*/ 
ods graphics off; 
proc reg data=sasuser.BodyFat; 
   NOWT: model PctBodyFat2= 
               Age Height 
               Neck Chest Abdomen Hip Thigh 
               Knee Ankle Biceps Forearm Wrist 
             / vif; 
   title 'Collinearity -- No Weight'; 
run; 
quit; 
ods graphics on; 
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Number of Observations Read 252 
Number of Observations Used 252 

 
Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 
Model 12 13117 1093.07775 58.55 <.0001 
Error 239 4462.05682 18.66969   
Corrected Total 251 17579    

 
Root MSE 4.32084 R-Square 0.7462 
Dependent Mean 19.15079 Adj R-Sq 0.7334 
Coeff Var 22.56222   

 
Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 
Variance 
Inflation 

Intercept 1 7.54528 7.67169 0.98 0.3263 0 
Age 1 0.07316 0.03176 2.30 0.0221 2.15369 
Height 1 -0.14157 0.08586 -1.65 0.1005 1.32980 
Neck 1 -0.58279 0.22314 -2.61 0.0096 3.95560 
Chest 1 -0.09077 0.09083 -1.00 0.3187 7.88319 
Abdomen 1 0.92587 0.08497 10.90 <.0001 11.28546 
Hip 1 -0.33792 0.12318 -2.74 0.0065 10.46928 
Thigh 1 0.22264 0.14465 1.54 0.1251 7.75310 
Knee 1 -0.08666 0.23483 -0.37 0.7124 4.31235 
Ankle 1 0.10688 0.21850 0.49 0.6252 1.84379 
Biceps 1 0.13168 0.16905 0.78 0.4368 3.50690 
Forearm 1 0.44842 0.19984 2.24 0.0258 2.19223 
Wrist 1 -1.74681 0.53138 -3.29 0.0012 3.30871 

Some collinearity still exists in the model. If Abdomen, the remaining variable with  
the highest VIF, is removed then the R square (and adjusted R square) value is reduced  
by approximately 0.13. 
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Solutions to Student Activities (Polls/Quizzes) 

7

4.01 Poll – Correct Answer
Predictor variables are assumed to be normally 
distributed in linear regression models.
 True
 False

7  

25

4.02 Multiple Choice Poll – Correct Answer
Given the properties of the standard normal distribution, 
you would expect about 95% of the studentized residuals 
to be between which two values?
a. -3 and 3
b. -2 and 2
c. -1 and 1
d. 0 and 1
e. 0 and 2
f. 0 and 3

2 5  
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36

4.03 Multiple Choice Poll – Correct Answer
How many observations did you find that might 
substantially influence parameter estimates?
a. 0
b. 1
c. 4
d. 5
e. 7
f. 10

3 6  

46

4.04 Multiple Choice Poll – Correct Answer
Which of the following assumptions does collinearity 
violate?
a. Independent errors
b. Constant variance
c. Normally distributed errors
d. None of the above

4 6  



4-62 Chapter 4  Regression Diagnostics 

Copyright © 2012, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. 

52

4.05 Poll – Correct Answer
If there is no correlation among the predictor variables, 
can there still be collinearity in the model?
 Yes
 No

5 2  
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