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2.1 Two-Sample t Tests in the TTEST Procedure 

3

Objectives
 Use the TTEST procedure to analyze the differences 

between two population means. 
 Verify the assumptions of a two-sample t test.

3  

4

Test Score Data Set, Revisited

4

Gender    SATScore IDNumber
Male        1170      61469897
Female      1090      33081197
Male        1240      68137597
Female      1000      37070397
Male        1210      64608797
Female      970      60714297
Male        1020      16907997
Female      1490       9589297
Male        1200      93891897
Female      1260      5859397

… … …

 

Recall the study in the previous chapter by students in Ms. Chao’s statistics class. The Board of Education 
set a goal of having their graduating class scoring, on average, 1200 on the SAT. The students then 
investigated whether the school district met its goal by drawing a sample of 80 students at random. The 
conclusion was that it was reasonable to assume that the mean of all magnet students was, in fact, 1200. 
However, when they planned the project, an argument arose between the boys and the girls about whether 
boys or girls scored higher. Therefore, they also collected information about gender to test for differences. 



 2.1  Two-Sample t Tests in the TTEST Procedure 2-3 

Copyright © 2012, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. 

5

Assumptions

 independent observations
 normally distributed data for each group
 equal variances for each group

5  

Before you start the analysis, examine the data to verify that the statistical assumptions are valid. 

The assumption of independent observations means that no observations provide any information about 
any other observation that you collect. For example, measurements are not repeated on the same subject. 
This assumption can be verified during the design stage. 

The assumption of normality can be relaxed if the data are approximately normally distributed  
or if enough data are collected. This assumption can be verified by examining plots of the data. 

There are several tests for equal variances. If this assumption is not valid, an approximate t test can  
be performed. 

If these assumptions are not valid and no adjustments are made, the probability of drawing incorrect 
conclusions from the analysis could increase. 
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6

Folded F Test for Equality of Variances

6
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To evaluate the assumption of equal variances in each group, you can use the Folded F test for equality  
of variances. The null hypothesis for this test is that the variances are equal. The F value is calculated  
as a ratio of the greater of the two variances divided by the lesser of the two. Thus, if the null hypothesis 
is true, F tends to be close to 1.0 and the p-value for F is statistically nonsignificant (p>0.05). 

This test is valid only for independent samples from normal distributions. Normality is required even  
for large sample sizes. 

If your data are not normally distributed, you can look at plots to determine whether the variances are 
approximately equal. 

If you reject the null hypothesis, it is recommended that you use the unequal variance t test  
in the PROC TTEST output for testing the equality of group means. 
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7

The TTEST Procedure
General form of the TTEST procedure:

7

PROC TTEST DATA=SAS-data-set;
CLASS variable;
VAR variables;
PAIRED variable1*variable2;

RUN;

 
Selected TTEST procedure statements: 

CLASS specifies the two-level variable for the analysis. Only one variable is allowed  
in the CLASS statement. 

VAR specifies numeric response variables for the analysis. If the VAR statement is not 
specified, PROC TTEST analyzes all numeric variables in the input data set that  
are not listed in a CLASS (or BY) statement. 

PAIRED specifies pairs of numeric response variables from which difference scores  
(variable1-variable2) are calculated. A one-sample t test is then performed  
on the difference scores. 

• If the CLASS statement and PAIRED statement are omitted, PROC TTEST performs a one-sample  
t test. 

• When the CLASS statement is present, a two-sample test is performed. 
• When a PAIRED statement is present instead, a paired t test is performed. 
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8

Equal Variance t Test and p-Values
t Tests for Equal Means: H0: µ1 - µ2 = 0
Equal Variance t Test (Pooled):

T = 7.4017 DF = 6.0 Prob > |T| = 0.0003 
Unequal Variance t Test (Satterthwaite):

T = 7.4017 DF = 5.8 Prob > |T| = 0.0004

F Test for Equal Variances: H0: s12 = s22

Equality of Variances Test (Folded F): 
F' = 1.51 DF = (3,3) Prob > F' = 0.7446 

8  

 Check the assumption of equal variances and then use the appropriate test for equal means. Because 
the p-value of the test F statistic is 0.7446, there is not enough evidence to reject the null hypothesis 
of equal variances. 

 Therefore, use the equal variance t-test line in the output to test whether the means of the two 
populations are equal. 

The null hypothesis that the group means are equal is rejected at the 0.05 level. You conclude that there  
is a difference between the means of the groups. 

 The equality of variances F test is found at the bottom of the PROC TTEST output. 
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9

Unequal Variance t Test and p-Values
t Tests for Equal Means: H0: µ1 - µ2 = 0
Equal Variance t Test (Pooled):

T = -1.7835 DF = 13.0 Prob > |T| = 0.0979
Unequal Variance t Test (Satterthwaite):

T = -2.4518 DF = 11.1 Prob > |T| = 0.0320 

F Test for Equal Variances: H0: s12 = s22

Equality of Variances Test (Folded F): 
F' = 15.28 DF = (9,4) Prob > F' = 0.0185 

9  

 Again, check the assumption of equal variances and then use the appropriate test for equal means. 
Because the p-value of the test F statistic is less than alpha=0.05, there is enough evidence to reject 
the null hypothesis of equal variances. 

 Therefore, use the unequal variance t-test line in the output to test whether the means of the two 
populations are equal. 

The null hypothesis that the group means are equal is rejected at the 0.05 level. 

 If you choose the equal variance t test, you would not reject the null hypothesis at the 0.05 level. 
This shows the importance of choosing the appropriate t test. 
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Two-Sample t Test 

 
/*st102d01.sas*/ 
proc ttest data=sasuser.TestScores plots(shownull)=interval; 
   class Gender; 
   var SATScore; 
   title "Two-Sample t-test Comparing Girls to Boys"; 
run; 

First, it is advisable to verify the assumptions of t tests. There is an assumption of normality of the 
distribution of each group. This assumption can be verified with a quick check of the Summary panel  
and Q-Q plot. 

 



 2.1  Two-Sample t Tests in the TTEST Procedure 2-9 

Copyright © 2012, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. 

 

The Q-Q plot (quantile-quantile plot) is similar to the Normal Probability plot that you saw earlier.  
The X-axis for this plot is scaled as quantiles, rather than probabilities. For each group it seems that  
the data approximate a normal distribution. There seems to be one potential outlier, a male scoring  
a perfect 1600 on the SAT, when no other male scored greater than 1400. 

 If assumptions are not met, you can do an equivalent nonparametric test, which does not make 
distributional assumptions. PROC NPAR1WAY is one procedure for performing this type of test. 
It is described in an appendix. 
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The statistical tables for the TTEST procedure are displayed below. 
 Gender N Mean Std Dev Std Err Minimum Maximum 

 Female 40 1221.0 157.4 24.8864 910.0 1590.0 
 Male 40 1160.3 130.9 20.7008 890.0 1600.0 
 Diff (1-2)  60.7500 144.8 32.3706   

 
 

Gender Method Mean 95% CL Mean Std Dev 
95% CL Std 

Dev 
 Female  1221.0 1170.7 1271.3 157.4 128.9 202.1 

 Male  1160.3 1118.4 1202.1 130.9 107.2 168.1 

 Diff (1-2) Pooled 60.7500 -3.6950 125.2 144.8 125.2 171.7 

 Diff (1-2) Satterthwaite 60.7500 -3.7286 125.2    

 
 Method Variances DF t Value Pr > |t| 
 Pooled Equal 78 1.88 0.0643 

 Satterthwaite Unequal 75.497 1.88 0.0644 

 
 Equality of Variances 

 Method Num DF Den DF F Value Pr > F 
 Folded F 39 39 1.45 0.2545 

 In the Statistics table, examine the descriptive statistics for each group and their differences. 

 Look at the Equality of Variances table that appears at the bottom of the output. The F test for equal 
variances has a p-value of 0.2545. Because this value is greater than the alpha level of 0.05, do not 
reject the null hypothesis of equal variances (This is equivalent to saying that there is insufficient 
evidence to indicate that the variances are not equal.) 

 Based on the F test for equal variances, you then look in the T-Tests table at the t test for the 
hypothesis of equal means. Using the equal variance (Pooled) t test, you do not reject the null 
hypothesis that the group means are equal. The mean difference between boys and girls is 60.75. 
However, because the p-value is greater than 0.05 (Pr>|t|=0.0643), you conclude that there  
is no significant difference in the average SAT score between boys and girls. 

 The confidence interval for the mean difference (-3.6950, 125.2) includes 0. This implies that 
you cannot say with 95% confidence that the difference between boys and girls is not zero. 
Therefore, it also implies that the p-value is greater than 0.05. 
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Confidence intervals are shown in the output object titled Difference Interval Plot. Because the variances 
here are so similar between males and females, the Pooled and Satterthwaite intervals (and p-values) are 
very similar. The lower bound of the Pooled interval extends past zero. 

 A good argument can be made that the point estimate for the difference between males and 
females is big from a practical standpoint. If the sample were a bit larger, that same difference 
might be significant because the pooled standard error would be smaller. However, such a sample 
needs to be drawn to confirm this hypothesis. 
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Exercises 

 

1.   Using PROC TTEST for Comparing Groups 

Elli Sagerman, a Masters of Education candidate in German Education at the University of North 
Carolina at Chapel Hill in 2000, collected data for a study. She looked at the effectiveness of a new 
type of foreign language teaching technique on grammar skills. She selected 30 students to receive 
tutoring; 15 received the new type of training during the tutorials and 15 received standard tutoring. 
Two students moved away from the district before completing the study. Scores on a standardized 
German grammar test were recorded immediately before the 12-week tutorials and then again 12 
weeks later at the end of the trial. Sagerman wanted to see the effect of the new technique on 
grammar skills. The data are in the SASUSER.GERMAN data set. 

Change Change in grammar test scores 

Group The assigned treatment, coded Treatment and Control 

Analyze the data using PROC TTEST. Assess whether the treatment group improved more than  
the control group. 

a.   Do the two groups appear to be approximately normally distributed? 

b.   Do the two groups have approximately equal variances? 

c.   Does the new teaching technique seem to result in significantly different change scores compared 
with the standard technique? 

12

2.01 Multiple Answer Poll
How do you tell PROC TTEST that you want to do a 
two-sample t test?

a. SAMPLE=2 option 
b. CLASS statement
c. GROUPS=2 option
d. PAIRED statement
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2.2 One-Way ANOVA 

17

Objectives
 Use the GLM procedure to analyze the differences 

between population means. 
 Verify the assumptions of analysis of variance.

1 7  

18

Overview of Statistical Models

1 8

Type of 
Predictors

Type of 
Response

Categorical Continuous Continuous and 
Categorical

Continuous Analysis of 
Variance 
(ANOVA)

Ordinary Least 
Squares (OLS)
Regression

Analysis of 
Covariance 
(ANCOVA)

Categorical Contingency 
Table Analysis 
or Logistic 
Regression

Logistic 
Regression

Logistic 
Regression
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19

Overview
Are there any differences among the population means?

1 9

Response

       
        

 

Analysis of variance (ANOVA) is a statistical technique used to compare the means of two or more 
groups of observations or treatments. For this type of problem, you have the following: 
• a continuous dependent variable, or response variable 
• a discrete independent variable, also called a predictor or explanatory variable. 

20

Research Questions for One-Way ANOVA
Do accountants, on average, earn more than teachers? *

* Is this a case for a t test?

2 0  

If you analyze the difference between two means using ANOVA, you reach the same conclusions as you 
reach using a pooled, two-group t test. Performing a two-group mean comparison in PROC GLM gives 
you access to different graphical and assessment tools than performing the same comparison in PROC 
TTEST. 
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21

Research Questions for One-Way ANOVA
Do people treated with one of two new drugs have higher 
average T-cell counts than people in the control group?

2 1

Placebo Treatment 1

Treatment 2

 

When there are three or more levels for the grouping variable, a simple approach is to run a series  
of t tests between all the pairs of levels. For example, you might be interested in T-cell counts in patients 
taking three medications (including one placebo). You could simply run a t test for each pair of 
medications. A more powerful approach is to analyze all the data simultaneously. The mathematical 
model is called a one-way analysis of variance (ANOVA), and the test statistic is the F ratio, rather than 
the Student’s t value. 

22

Research Questions for One-Way ANOVA
Do people spend different amounts depending on which 
type of credit card they have?

2 2  
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23

Research Questions for One-Way ANOVA
Does the type of fertilizer used affect the average weight 
of garlic grown at the Montana Gourmet Garlic Ranch?

2 3  
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24

Garlic Example

2 4  

Example: Montana Gourmet Garlic is a company that grows garlic using organic methods. It specializes 
in hardneck varieties. Knowing a little about experimental methods, the owners design  
an experiment to test whether growth of the garlic is affected by the type of fertilizer used. 
They limit the experimentation to a Rocambole variety named Spanish Roja, and test three 
organic fertilizers and one chemical fertilizer (as a control). They blind themselves to the 
fertilizer by using containers with numbers 1 through 4. (In other words, they design the 
experiment in such a way that they do not know which fertilizer is in which container.)  
One acre of farmland is set aside for the experiment. It is divided into 32 beds. They randomly 
assign fertilizers to beds. At harvest, they calculate the average weight of garlic bulbs in each 
of the beds. The data are in the sasuser.MGGarlic data set. 

These are the variables in the data set: 

Fertilizer The type of fertilizer used (1 through 4) 

BulbWt The average garlic bulb weight (in pounds) in the bed 

Cloves The average number of cloves on each bulb 

BedID A randomly assigned bed identification number 
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Descriptive Statistics across Groups 

 

Example: Print the data in the sasuser.MGGarlic data set and create descriptive statistics. 
/*st102d02.sas*/  /*Part A*/ 
proc print data=sasuser.MGGarlic (obs=10); 
   title 'Partial Listing of Garlic Data'; 
run; 

Part of the data is shown below. 
Obs Fertilizer BulbWt Cloves BedID 

1 4 0.20901 11.5062 30402 
2 3 0.25792 12.2550 23423 
3 2 0.21588 12.0982 20696 
4 4 0.24754 12.9199 25412 
5 1 0.24402 12.5793 10575 
6 3 0.20150 10.6891 21466 
7 1 0.20891 11.5416 14749 
8 4 0.15173 14.0173 25342 
9 2 0.24114 9.9072 20383 

10 3 0.23350 11.2130 23306 

Next, look at the fertilizer groups separately. 
/*st102d02.sas*/  /*Part B*/ 
proc means data=sasuser.MGGarlic printalltypes maxdec=3; 
   var BulbWt; 
   class Fertilizer; 
   title 'Descriptive Statistics of Garlic Weight'; 
run; 
 
/*st102d02.sas*/  /*Part C*/ 
proc sgplot data=sasuser.MGGarlic; 
   vbox BulbWt / category=Fertilizer datalabel=BedID; 
   format BedID 5.; 
   title "Box and Whisker Plots of Garlic Weight"; 
run; 

Selected PROC MEANS statement option: 

PRINTALLTYPES displays all requested combinations of class variables (all _TYPE_ values)  
in the printed or displayed output. 

Selected PROC MEANS statement: 

CLASS variable(s) specifies the variables whose values define the subgroup combinations for the 
analysis. Class variables are numeric or character and can have continuous values, 
but they typically have a few discrete values that define levels of the variable.  
You do not have to sort the data by class variables. 
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Selected SGPLOT VBOX statement option: 

CATEGORY= produces separate box plots for each level of the variable listed. 
Analysis Variable : BulbWt 

N 
Obs N Mean Std Dev Minimum Maximum 

32 32 0.219 0.029 0.152 0.278 

 
Analysis Variable : BulbWt 

Fertilizer 
N 

Obs N Mean Std Dev Minimum Maximum 
1 9 9 0.225 0.025 0.188 0.254 
2 8 8 0.209 0.026 0.159 0.241 
3 11 11 0.230 0.026 0.189 0.278 
4 4 4 0.196 0.041 0.152 0.248 

 The design is not balanced. In other words, the groups are not equally sized. 

 

Caution should be exercised when viewing the box plots since there are few observations per group, 
increasing variability. 
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The ANOVA Hypothesis

2 6

H0: F1=F2=F3=F4
H1: F1 ≠ F2 or F1 ≠ F3 

or F1 ≠ F4 or F2 ≠ F3 
or F2 ≠ F4 or F3 ≠ F4

 

Small differences between sample means are usually present. The objective is to determine whether these 
differences are statistically significant. In other words, is the difference more than what might be expected 
to occur by chance? 
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Partitioning Variability in ANOVA

2 7

Variability
between Groups

Variability
within Groups

SST =             SSM + SSE

Total Variability

 

In ANOVA, the Total Variation (as measured by the corrected total sum of squares) is partitioned into two 
components, the Between Group Variation (displayed in the ANOVA table as the Model Sum of Squares) 
and the Within Group Variation (displayed as the Error Sum of Squares). As its name implies, ANalysis 
Of VAriance analyzes, or breaks apart, the variance of the dependent variable to determine whether  
the between-group variation is a significant portion of the total variation. ANOVA compares the portion  
of variation in the response variable attributable to the grouping variable to the portion of variability that 
is unexplained. The test statistic, the F Ratio, is only a ratio of the model variance to the error variance. 
The calculations are shown below. 

Total Variation the overall variability in the response variable. It is calculated as the sum of 
the squared differences between each observed value and the overall mean, 

( )2YYij −∑∑ . This measure is also referred to as the Total Sum of Squares 
(SST). 

Between Group Variation the variability explained by the independent variable and therefore 
represented by the between treatment sums of squares. It is calculated as the 
weighted (by group size) sum of the squared differences between the mean 

for each group and the overall mean, ( )2YYn ii −∑ . This measure is also 
referred to as the Model Sum of Squares (SSM). 

Within Group Variation the variability not explained by the model. It is also referred to as within 
treatment variability or residual sum of squares. It is calculated as the sum 
of the squared differences between each observed value and the mean for its 
group, ( )2iij YY −∑∑ . This measure is also referred to as the Error Sum of 
Squares (SSE). 

 SST=SSM+SSE, meaning that the model sum of squares and the error sum of squares sums  
to the total sum of squares. 
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Sums of Squares

2 8  

A simple example of the various sums of squares is shown in this set of slides. First, the overall mean  
of all data values is calculated. 

29

Total Sum of Squares

2 9

SST = (3-6)2 + (4-6)2 + (5-6)2 + (7-6)2 + (8-6)2 + (9-6)2 = 28

(3-6)2

(7-6)2

 

The total sum of squares, SST, is a measure of the total variability in a response variable. It is calculated 
by summing the squared distances from each point to the overall mean. Because it is correcting for  
the mean, this sum is sometimes called the corrected total sum of squares. 
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30

Error Sum of Squares

3 0

SSE = (3-4)2 + (4-4)2 + (5-4)2 + (7-8)2 + (8-8)2 + (9-8)2 = 4

(5-4)2
=AY 4

8=BY

 

The error sum of squares, SSE, measures the random variability within groups; it is the sum of the squared 
deviations between observations in each group and that group’s mean. This is often referred to as the 
unexplained variation or within-group variation. 
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Model Sum of Squares

3 1

SSM = 3*(4-6)2 + 3*(8-6)2 = 24

(8-6)2

(4-6)2

=AY 4

8=BY

 

The model sum of squares, SSM, measures the variability between groups; it is the sum of the squared 
deviations between each group mean and the overall mean, weighted by the number of observations  
in each group. This is often referred to as the explained variation. The model sum of squares can also  
be calculated by subtracting the error sum of squares from the total sum of squares: SSM=SST−SSE. 

In this example, the model explains approximately 85.7%, ((SSM / SST)*100)%, of the variability  
in the response. The other 14.3% represents unexplained variability, or process variation. In other words, 
the variability due to differences between the groups (the explained variability) makes up a larger 
proportion of the total variability than the random error within the groups (the unexplained variability). 

The total sum of squares (SST) refers to the overall variability in the response variable. The SST is 
computed under the null hypothesis (that the group means are all the same). The error sum of squares 
(SSE) refers to the variability within the treatments not explained by the independent variable. The SSE  
is computed under the alternative hypothesis (that the model includes nonzero effects). The model sum  
of squares (SSM) refers to the variability between the treatments explained by the independent variable. 

The basic measures of variation under the two hypotheses are transformed into a ratio of the model and 
the error variances that has a known distribution (a sample statistic, the F ratio) under the null hypothesis 
that all group means are equal. The F ratio can be used to compute a p-value. 
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F Statistic and Critical Values at a=0.05

3 2

F(Model df, Error df)=MSM / MSE

 

The null hypothesis for analysis of variance is tested using an F statistic. The F statistic is calculated  
as the ratio of the Between Group Variance to the Within Group Variance. In the output of PROC GLM, 
these values are shown as the Model Mean Square and the Error Mean Square. The mean square values 
are calculated as the sum of square value divided by the degrees of freedom. 

In general, degrees of freedom (DF) can be thought of as the number of independent pieces  
of information. 
• Model DF is the number of treatments minus 1. 
• Corrected total DF is the sample size minus 1. 
• Error DF is the sample size minus the number of treatments (or the difference between the corrected 

total DF and the Model DF. 

Mean squares are calculated by taking sums of squares and dividing by the corresponding degrees  
of freedom. They can be thought of as variances. 
• Mean square error (MSE) is an estimate of s2, the constant variance assumed for all treatments. 
• If µi=µj, for all i ≠ j, then the mean square for the model (MSM) is also an estimate of s2. 
• If µi≠µj, for any i ≠ j, then MSM estimates s2 plus a positive constant. 

• 
M

M

E
E

SS
df

SS
df

MSMF
MSE

= = . 

• The p-value for the test is then calculated from the F distribution with appropriate degrees of freedom. 

 Variance is the traditional measure of precision. Mean square error (MSE) is the traditional 
measure of accuracy used by statisticians. MSE is equal to variance plus bias-squared. Because 
the sample mean ( )x is an unbiased estimate of the population mean (µ), bias=0 and MSE 
measures the variance. 
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Coefficient of Determination

3 3

“Proportion of variance accounted for by the model”

R2= SSM / SST

 

The coefficient of determination, R2, is a measure of the proportion of variability explained  

by the independent variables in the analysis. This statistic is calculated as 2 M

T

SSR
SS

=  

The value of R2 is between 0 and 1. The value is 
• close to 0 if the independent variables do not explain much variability in the data 
• close to 1 if the independent variables explain a relatively large proportion of variability in the data. 

Although values of R2 closer to 1 are preferred, judging the magnitude of R2 depends on the context  
of the problem. 

The coefficient of variation (denoted Coeff Var) expresses the root MSE (the estimate of the standard 
deviation for all treatments) as a percent of the mean. It is a unitless measure that is useful in comparing 
the variability of two sets of data with different units of measure. 
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The ANOVA Model

3 4

Yik =  µ +   τi +    eik

BulbWτ =                       +                       +  
Base
Level Ferτilizer Unaccounτed

for Variaτion

 

The model, Yik=µ+τi+eik, is one way of representing the relationship between the dependent  
and independent variables in ANOVA. 

Yik the kth value of the response variable for the ith treatment. 

µ the overall population mean of the response, for example, garlic bulb weight. 

τi the difference between the population mean of the ith treatment and the overall mean, µ. This  
is referred to as the effect of treatment i. 

eik the difference between the observed value of the kth observation in the ith group and the mean  
of the ith group. This is called the error term. 

 PROC GLM uses a parameterization of categorical variables in its CLASS statement that will  
not directly estimate the values of the parameters in the model shown. The correct parameter 
estimates can be obtained by adding the SOLUTION option in the MODEL statement in PROC 
GLM and then using simple algebra. Parameter estimates and standard errors can also be obtained 
using ESTIMATE statements. These issues are discussed in depth in the Statistics 2: ANOVA  
and Regression course and in the SAS documentation. 

 The researchers are interested only in these four specific fertilizers. In some applications this 
would be considered a fixed effect. If the fertilizers used were a sample of many that can be used, 
the sampling variability of fertilizers would need to be taken into account in the model. In that 
case, the fertilizer variable would be treated as a random effect. (Random effects are not discussed 
in this course.) 
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The GLM Procedure
General form of the GLM procedure:

3 5

PROC GLM DATA=SAS-data-set PLOTS=options;
CLASS variables;
MODEL dependents=independents </ options>;
MEANS effects </ options>;
LSMEANS effects </ options>;
OUTPUT OUT=SAS-data-set keyword=variable…;

RUN;
QUIT;

 

Selected GLM procedure statements: 

CLASS specifies classification variables for the analysis. 

MODEL specifies dependent and independent variables for the analysis. 

MEANS computes unadjusted means of the dependent variable for each value of the specified 
effect. 

LSMEANS produces adjusted means for the outcome variable, broken out by the variable specified 
and adjusting for any other explanatory variables included in the MODEL statement.  

OUTPUT specifies an output data set that contains all variables from the input data set and variables 
that represent statistics from the analysis. 

 PROC GLM supports RUN-group processing, which means the procedure stays active until  
a PROC, DATA, or QUIT statement is encountered. This enables you to submit additional 
statements followed by another RUN statement without resubmitting the PROC statement. 
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Assumptions for ANOVA
 Observations are independent.
 Errors are normally distributed.
 All groups have equal error variances.

 

The validity of the p-values depends on the data meeting the assumptions for ANOVA. Therefore, it is 
good practice to verify those assumptions in the process of performing the analysis of group differences. 
• Independence implies that the eij occurrences in the theoretical model are uncorrelated. 
• The errors are assumed to be normally distributed for every group or treatment. 
• Approximately equal error variances are assumed across treatments. 
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Assessing ANOVA Assumptions
 Good data collection designs help ensure the 

independence assumption. 
 Diagnostic plots from PROC GLM can be used to 

verify the assumption that the error is approximately 
normally distributed.

 PROC GLM produces a test of equal variances with 
the HOVTEST option in the MEANS statement. H0 for 
this hypothesis test is that the variances are equal for 
all populations.
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Predicted and Residual Values

3 8

The predicted value in ANOVA is the group mean.
A residual is the difference between the observed value 
of the response and the predicted value of the response 
variable.

Observation Fertilizer Observed Predicted Residual
1 4 0.20901000 0.19635250 0.01265750
2 3 0.25792000 0.22982091 0.02809909
3 2 0.21588000 0.20856500 0.00731500
4 4 0.24754000 0.19635250 0.05118750
5 1 0.24402000 0.22540667 0.01861333

 

The residuals from the ANOVA are calculated as the actual values minus the predicted values (the group 
means in ANOVA). Diagnostic plots (including normal quantile-quantile plots of the residuals) can be 
used to assess the normality assumption. With a reasonably sized sample and approximately equal groups 
(balanced design), only severe departures from normality are considered a problem. Residual values sum 
to 0 in ANOVA. 

In ANOVA with more than one predictor variable, the HOVTEST option is unavailable. In those 
circumstances, you can plot the residuals against their predicted values to visually assess whether  
the variability is constant across groups. 
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2.02 Multiple Choice Poll
If you have 20 observations in your ANOVA and you 
calculate the residuals, to which of the following would 
they sum?
a. -20
b. 0
c. 20
d. 400
e. Unable to tell from the information given

4 0  
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2.03 Multiple Choice Poll 
If you have 20 observations in your ANOVA and you 
calculate the squared residuals, to which of the following 
would they sum?
a. -20
b. 0
c. 20
d. 400
e. Unable to tell from the information given

4 2  
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The GLM Procedure 

 
/*st102d03.sas*/  /*Part A*/ 
proc glm data=sasuser.MGGarlic; 
   class Fertilizer; 
   model BulbWt=Fertilizer; 
   title 'Testing for Equality of Means with PROC GLM'; 
run; 
quit; 

Turn your attention to the first two tables of the output. The first table specifies the number of levels  
and the values of the class variable. 

Class Level Information 
Class Levels Values 
Fertilizer 4 1 2 3 4 

The second table shows both the number of observations read and the number of observations used.  
These values are the same because there are no missing values in for any variable in the model. If any  
row has missing data for a predictor or response variable, that row is dropped from the analysis. 

Number of Observations Read 32 
Number of Observations Used 32 

The second part of the output contains all of the information that is needed to test the equality  
of the treatment means. It is divided into three parts: 
• the analysis of variance table 
• descriptive information 
• information about the effect of the independent variable in the model 

Look at each of these parts separately. 

Source DF 
Sum of 

Squares Mean Square F Value Pr > F 
Model 3 0.00457996 0.00152665 1.96 0.1432 
Error 28 0.02183054 0.00077966   
Corrected Total 31 0.02641050    

The F statistic and corresponding p-value are reported in the Analysis of Variance table. Because  
the reported p-value (0.1432) is greater than 0.05, you do not reject the null hypothesis of no difference 
between the means. 

R-Square Coeff Var Root MSE BulbWt Mean 
0.173414 12.74520 0.027922 0.219082 

The BulbWt Mean is the mean of all of the data values in the variable BulbWt without regard  
to Fertilizer. 

As discussed previously, the R2 value is often interpreted as the “proportion of variance accounted for  
by the model.” Therefore, you might say that in this model, Fertilizer explains about 17% of the 
variability of BulbWt. 
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Source DF Type I SS Mean Square F Value Pr > F 
Fertilizer 3 0.00457996 0.00152665 1.96 0.1432 

 
Source DF Type III SS Mean Square F Value Pr > F 
Fertilizer 3 0.00457996 0.00152665 1.96 0.1432 

For a one-way analysis of variance (only one classification variable), the information about the 
independent variable in the model is an exact duplicate of the model line of the analysis of variance table. 

 
The default plot created with this code is a box plot. 

It is good practice to check the validity of your ANOVA assumptions. The next part of the program  
is dedicated to verifying those statistical assumptions for inference tests. 
/*st102d03.sas*/  /*Part B*/ 
proc glm data=sasuser.MGGarlic plots(only)=diagnostics; 
   class Fertilizer; 
   model BulbWt=Fertilizer; 
   means Fertilizer / hovtest; 
   title 'Testing for Equality of Means with PROC GLM'; 
run; 
quit; 
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Selected MEANS statement option: 

HOVTEST performs Levene’s test for homogeneity (equality) of variances. The null hypothesis 
for this test is that the variances are equal. Levene’s test is the default. 

Selected PLOTS option: 

DIAGNOSTICS produces a panel display of diagnostic plots for linear models. 

 The UNPACK option can be used in order to separate the individual plots in the panel display. 

 

The panel in the upper left corner shows a plot of the residuals versus the fitted values from the ANOVA 
model. Essentially, you are looking for a random scatter within each group. Any patterns or trends in this 
plot can indicate model misspecification. 
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To check the normality assumption, open the residual histogram and Q-Q plot, which are at the bottom 
left and middle left, respectively. 

The histogram has no unique peak and it has short tails. However, it is approximately symmetric. 

The data values in the quantile-quantile plot stay close to the diagonal reference line and give strong 
support to the assumption of normally distributed errors. 

Near the end of the tabular output, you can check the assumption of equal variances. 
Levene's Test for Homogeneity of BulbWt Variance 
ANOVA of Squared Deviations from Group Means 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 
Fertilizer 3 1.716E-6 5.719E-7 0.98 0.4173 
Error 28 0.000016 5.849E-7   

The output above is the result of the HOVTEST option in the MEANS statement. Levene’s test for 
homogeneity of variances is the default. The null hypothesis is that the variances are equal over all 
Fertilizer groups. The p-value of 0.4173 is not smaller than your alpha level of 0.05 and therefore you  
do not reject the null hypothesis. One of your assumptions is met. 

 At this point, if you determined that the variances were not equal, you could add the WELCH 
option to the MEANS statement. This requests Welch’s (1951) variance-weighted one-way 
ANOVA. This alternative to the usual ANOVA is robust to the assumption of equal variances. 
This is similar to the unequal variance t test for two populations. See the appendix for more 
information. 

45

Analysis Plan for ANOVA – Summary
Null Hypothesis: All means are equal.
Alternative Hypothesis: At least one mean is different.

1. Produce descriptive statistics.
2. Verify assumptions.

– Independence
– Errors are normally distributed.
– Error variances are equal for all groups.

3. Examine the p-value in the ANOVA table. If the
p-value is less than alpha, reject the null hypothesis.

4 5  
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Exercises 

 

2.   Analyzing Data in a Completely Randomized Design 

Consider an experiment to study four types of advertising: local newspaper ads, local radio ads, 
in-store salespeople, and in-store displays. The country is divided into 144 locations, and 36 locations 
are randomly assigned to each type of advertising. The level of sales is measured for each region in 
thousands of dollars. You want to see whether the average sales are significantly different for various 
types of advertising. The sasuser.ads data set contains data for these variables: 

Ad type of advertising 

Sales level of sales in thousands of dollars 

a.   Examine the data. Use the MEANS and SGPLOT procedures. What information can you obtain 
from looking at the data? 

b.   Test the hypothesis that the means are equal. Be sure to check that the assumptions of the analysis 
method that you choose are met. What conclusions can you reach at this point in your analysis? 
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2.3 ANOVA with Data from a Randomized Block Design 

49

Objectives
 Recognize the difference between a completely 

randomized design and a randomized block design.
 Differentiate between observed data and designed 

experiments.
 Use the GLM procedure to analyze data from a 

randomized block design.

4 9  
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Observational or Retrospective Studies
 Groups can be naturally occurring. 

– for example, gender and ethnicity
 Random assignment might be unethical or untenable.

– for example, smoking or credit risk groups
 Often you look at what already happened 

(retrospective) instead of following through to the 
future (prospective).

 You have little control over other factors contributing 
to the outcome measure.

5 0  

In the original study, the Montana Gourmet Garlic growers randomly assigned their treatments (fertilizer) 
to plants in each of their Spanish Roja beds. They did this as an afterthought before they realized that they 
were going to do a statistical analysis. In fact, this could reasonably be thought of as a retrospective study. 
When you analyze the differences between naturally occurring groups, you are not actually manipulating 
a treatment. There is no true independent variable. 

Many public health and business analyses are retrospective studies. The data values are observed as they 
occur, not affected by an experimental design. Often this is the best you can do. For example, you cannot 
ethically randomly assign people to smoking and nonsmoking groups. 
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Controlled Experiments
 Random assignment might be desirable to eliminate 

selection bias.
 You often want to look at the outcome measure 

prospectively.
 You can manipulate the factors of interest and can 

more reasonably claim causation.
 You can design your experiment to control for other 

factors contributing to the outcome measure.

5 1  

Given the negative results of the fertilizer study from 2006, the garlic growers planned a prospective 
study in 2007. They decided they needed to try more rigorously to control the influences on the growth  
of garlic. 

52

Nuisance Factors

5 2  

Factors that can affect the outcome but are not of interest in the experiment are called nuisance factors. 
The variation due to nuisance factors becomes part of the random variation. 
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2.04 Multiple Choice Poll
Which part of the ANOVA tables contains the variation 
due to nuisance factors?
a. Sum of Squares Model
b. Sum of Squares Error
c. Degrees of Freedom

5 4  
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Assigning Treatments within Blocks

5 6  

A discussion with a statistician helped the farmers identify other determinants of garlic bulb weight.  
The statistician suggested that, although they could not actually apply those factors randomly (they could 
not change the weather or the soil pH or composition or sun exposure), they could control for those 
factors by blocking. He suggested that whatever the effects of those external influences are, the 
magnitudes of those nuisance factors should be approximately the same within sectors of the farm land. 
Therefore, instead of randomizing the Fertilizer treatment across all 32 beds, he suggested they only 
randomize the application of the four Fertilizer treatments within each of the eight sectors. 

An experimental design such as this is often referred to as a randomized block design. In this case, Sector  
is the block. The blocking variable Sector is included in the model, but you are not interested in its effect, 
only in controlling the nuisance factor effects explained by it. By including Sector in the model, you 
could potentially account for many nuisance factors. 

Blocking is a logical grouping of experimental units. In this study, applying all four fertilizers to the same 
sector makes sense from a practical point of view. There might be a great disparity in the presence of 
nuisance factors across sectors, but you can be reasonably confident that the nuisance factor influence  
is fairly even within sectors. 

Blocking is a restriction on randomization and therefore must be taken into account in data analysis. 
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Including a Blocking Variable in the Model

5 7

Yijk =  µ +  ai +  tj +  eijk

Bulb Weight  =                +                +                   +  
Base
Level

Fertilizer
Type

Unaccounted
for VariationSector
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Nuisance Factors

5 8  

Because Sector is included in the ANOVA model, any effect caused by the nuisance factors that are 
common within a sector are accounted for in the Model Sum of Squares and not the Error Sum of 
Squares, as was the case in the previous study. Removing significant effects from the Error Sum of 
Squares tends to give more power to the test of the effect of interest (in this case, Fertilizer). That  
is because the MSE, the denominator of the F statistic, tends to be reduced, increasing the F value  
and thereby decreasing the p-value. 
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2.05 Multiple Choice Poll
In a block design, which part of the ANOVA table 
contains the variation due to the nuisance factor?
a. Sum of Squares Model
b. Sum of Squares Error
c. Degrees of Freedom

6 0  
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Including a Blocking Variable in the Model
Additional assumptions are as follows:
 Treatments are randomly assigned within each block.
 The effects of the treatment factor are constant across 

the levels of the blocking variable.

In the garlic example, the design is balanced, which 
means that there is the same number of garlic samples 
for every Fertilizer/Sector combination.

6 2  
Typically, when the effects of the treatment factor are not constant across the levels of the other variable, 
then this condition is called interaction. However, when a randomized block design is used, it is assumed 
that the effects are the same within each block. In other words, it is assumed that there are no interactions 
with the block variable. 

 In most randomized block designs, the blocking variable is treated as a random effect. Treating  
an effect as random changes how standard errors are calculated and can give different answers 
from treating it as a fixed effect (as in the example). 
In this example, you have the same number of garlic samples for every Fertilizer/Sector 
combination. This is a balanced design. When treatment groups are compared to each other  
(in other words, not to 0 or some other specified value), the results from treating the block  
as a fixed or random effect are exactly the same. 
A model that includes both random and fixed effects is called a mixed model and can be analyzed 
with the MIXED procedure. The Mixed Models Analyses Using SAS® class focuses on analyzing 
mixed models. The Statistics 2: ANOVA and Regression class has more detail about how to 
analyze unbalanced designs and data that do not meet ANOVA assumptions. 

For more information about mixed models in SAS, you can also consult the SAS online 
documentation or the SAS Books by Users book SAS® System for Mixed Models, which also goes 
into detail about the statistical assumptions for mixed models. 
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ANOVA with Blocking 

 
/*st102d04.sas*/ 
proc glm data=sasuser.MGGarlic_Block plots(only)=diagnostics; 
   class Fertilizer Sector; 
   model BulbWt=Fertilizer Sector; 
   title 'ANOVA for Randomized Block Design'; 
run; 
quit; 

Selected PLOTS() option: 

(ONLY) requests that only the requested plots be produced and no default plots. 

 The blocking variable must be in the model and it must be listed in the CLASS statement. 

A check of the normality assumption using the Q-Q plot follows. 
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No severe departure from normality of the error terms seem to exist. 

 Validation of the equal variances assumption for models with more than one independent variable 
is beyond the scope of this text. This topic is discussed in the Statistics 2: ANOVA and 
Regression class. 

Class Level Information 
Class Levels Values 
Fertilizer 4 1 2 3 4 
Sector 8 1 2 3 4 5 6 7 8 

The Class Level Information table reflects the addition of the eight-level Sector variable. 
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Number of Observations Read 32 
Number of Observations Used 32 

 

Source DF 
Sum of 

Squares Mean Square F Value Pr > F 
Model 10 0.02307263 0.00230726 5.86 0.0003 
Error 21 0.00826745 0.00039369   
Corrected Total 31 0.03134008    

 
R-Square Coeff Var Root MSE BulbWt Mean 
0.736202 9.085064 0.019842 0.218398 

 
Source DF Type I SS Mean Square F Value Pr > F 
Fertilizer 3 0.00508630 0.00169543 4.31 0.0162 
Sector 7 0.01798632 0.00256947 6.53 0.0004 

 
Source DF Type III SS Mean Square F Value Pr > F 
Fertilizer 3 0.00508630 0.00169543 4.31 0.0162 
Sector 7 0.01798632 0.00256947 6.53 0.0004 

The overall F test (F(10,21)=5.86, p=0.0003) indicates that there are significant differences between  
the means of the garlic bulb weights across fertilizers or blocks (sectors). However, because there is more 
than one term in the model, you cannot tell whether the differences are due to differences among the 
fertilizers or differences across sectors. In order to make that determination, you must look at the 
subsequent tests for each factor. 

What have you gained by including Sector in the model? If you compare the estimate of the experimental 
error variance (MSE), you note this is smaller compared to the data and model that included Fertilizer 
only (0.00039369 versus 0.00077966). Depending on the magnitude of the difference, this could affect 
the comparisons between the treatment means by finding more significant differences than the Fertilizer-
only model, given the same sample sizes. 

Also notice that the R square for this model is much greater than that in the previous model (0.736 versus 
0.173). To some degree, this is a function of having more model degrees of freedom, but it is unlikely this 
is the only reason for this magnitude of difference. 

Most important to the Montana Gourmet Garlic farmers is that the effect of Fertilizer in this model  
is now significant (F=4.31, p=0.0162). The Type III SS test is at the bottom of the output tests for 
differences due to each variable, controlling for (or “adjusting for”) the other variable. 

 The Type I SS test is sequential. In other words, the test for each variable only adjusts for the 
variables above it. In this case, because the design is completely balanced, the Type I and Type III 
tests would be exactly the same. In general that would not be true. 

In determining the usefulness of having a blocking variable (Sector) included in the model, you can 
consider the F value for the blocking variable. Some statisticians suggest that if this ratio is greater than 1, 
then the blocking factor is useful. If the ratio is less than 1, then adding the variable is detrimental to the 
analysis. If you find that including the blocking factor is detrimental to the analysis, then you can exclude 
it from future studies, but it must be included in all ANOVA models calculated with the sample that you 
already collected. This is because blocking places a restriction on the random assignment of units to 
treatments, and modeling the data without the blocking variable treats the data as if that restriction did  
not exist. 
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Exercises 

 

3.   Analyzing Data in a Randomized Block Design 

When you design the advertising experiment in the first question, you are concerned that there  
is variability caused by the area of the country. You are not particularly interested in what differences 
are caused by Area, but you are interested in isolating the variability due to this factor.  
The sasuser.ads1 data set contains data for the following variables: 

Ad type of advertising 

Area area of the country 

Sales level of sales in thousands of dollars 

Test the hypothesis that the means are equal. Include all of the variables in your MODEL statement. 

a.   What can you conclude from your analysis? 

b.   Was adding the blocking variable Area into the design and analysis detrimental to the test of Ad? 
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2.06 Multiple Answer Poll
If the blocking variable Area had a very small F value, 
what would be a valid next step? Select all that apply.

a. Remove it from the MODEL statement and rerun 
the analysis.

b. Test an interaction term.
c. Report the F value and plan a new study.

6 7  
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My Groups Are Different. What Next?
 The p-value for Fertilizer indicates you should reject 

the H0 that all groups are the same.
 From which pairs of fertilizers, are garlic bulb weights

different from one another?
 Should you go back and do several t tests?

7 0  

The garlic researchers know that not all fertilizers are created equal, but which one is the best? 
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2.4 ANOVA Post Hoc Tests 

72

Objectives
 Perform pairwise comparisons among groups after 

finding a significant effect of an independent variable 
in ANOVA.

 Demonstrate graphical features in PROC GLM for 
performing post hoc tests.

 Interpret a diffogram.
 Interpret a control plot.

7 2  
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2.07 Multiple Choice Poll
With a fair coin, your probability of getting heads on one 
flip is 0.5. If you flip a coin once and got heads, what is 
the probability of getting heads on the second try?
a. 0.50
b. 0.25
c. 0.00
d. 1.00
e. 0.75

7 4  
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2.08 Multiple Choice Poll
With a fair coin, your probability of getting heads on one 
flip is 0.5. If you flip a coin twice, what is the probability of 
getting at least one head out of two?
a. 0.50
b. 0.25
c. 0.00
d. 1.00
e. 0.75

7 6  
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Multiple Comparison Methods

7 8

Comparisonwise 
Error Rate 
(a=0.05)

Number of 
Comparisons

Experimentwise 
Error Rate 
(a=0.05)

.05 1 .05

.05 3 .14

.05 6 .26

.05 10 .40

EER ≤ 1 – (1 - a)nc  where nc=number of comparisons

 

When you control the comparisonwise error rate (CER), you fix the level of alpha for a single 
comparison, without taking into consideration all the pairwise comparisons that you are making. 

The experimentwise error rate (EER) uses an alpha that takes into consideration all the pairwise 
comparisons that you are making. Presuming no differences exist, the chance that you falsely conclude  
that at least one difference exists is much higher when you consider all possible comparisons. 

If you want to make sure that the error rate is 0.05 for the entire set of comparisons, use a method that 
controls the experimentwise error rate at 0.05. 

 There is some disagreement among statisticians about the need to control the experimentwise 
error rate. 
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Multiple Comparison Methods

Control
Comparisonwise 

Error Rate
Pairwise t-tests

Control
Experimentwise 

Error Rate

Compare All Pairs 
Tukey

Compare to 
Control Dunnett

7 9  

All of these multiple comparison methods are requested with options in the LSMEANS statement  
of PROC GLM. 

In order to call for the statistical hypothesis tests for group differences and ODS Statistical Graphics  
to support them, turn on ODS Graphics and then: 
• For Comparisonwise Control LSMEANS / PDIFF=ALL ADJUST=T 
• For Experimentwise Control LSMEANS / PDIFF=ALL ADJUST=TUKEY or  

 PDIFF=CONTROL(‘control level’) ADJUST=DUNNETT 

 Many other available options control the experimentwise error rate. For information about these 
options, see the SAS documentation. 

 One-tailed tests against a control level can be requested using the CONTROLL (lower tail)  
or CONTROLU (upper tail) options in the LSMEANS statement. 
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Tukey’s Multiple Comparison Method
This method is appropriate when you consider pairwise 
comparisons only.
The experimentwise error rate is
 equal to alpha when all pairwise comparisons are 

considered
 less than alpha when fewer than all pairwise 

comparisons are considered.

8 0  

A pairwise comparison examines the difference between two treatment means. “All pairwise 
comparisons” means all possible combinations of two treatment means. 

Tukey’s multiple comparison adjustment is based on conducting all pairwise comparisons and guarantees 
that the Type I experimentwise error rate is equal to alpha for this situation. If you choose to do fewer 
than all pairwise comparisons, then this method is more conservative.  
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Diffograms

8 1  

A diffogram can be used to quickly tell whether two group means are statistically significant. The point 
estimates for the differences between pairs of group means can be found at the intersections of the vertical 
and horizontal lines drawn at group mean values. The downward-sloping diagonal lines show the 
confidence intervals for the differences. The upward-sloping line is a reference line showing where  
the group means would be equal. Intersection of the downward-sloping diagonal line for a pair with  
the upward-sloping, broken gray diagonal line implies that the confidence interval includes zero and that 
the mean difference between the two groups is not statistically significant. In that case, the diagonal line 
for the pair will be broken. If the confidence interval does not include zero, then the diagonal line for  
the pair will be solid. With ODS statistical graphics, these plots are automatically generated when you use 
the PDIFF=ALL option in the LSMEANS statement. 
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Special Case of Comparing to a Control
Comparing to a control is appropriate when there is a 
natural reference group, such as a placebo group in a 
drug trial.
 Experimentwise error rate is no greater than the stated 

alpha.
 Comparing to a control takes into account the 

correlations among tests.
 One-sided hypothesis tests against a control group 

can be performed.
 Control comparison computes and tests k-1 groupwise 

differences, where k is the number of levels of the 
CLASS variable.

 An example is the Dunnett method.

8 2  

Dunnett’s method is recommended when there is a true control group. When appropriate (when a natural 
control category exists, against which all other categories are compared) it is more powerful than methods 
that control for all possible comparisons. In order to do a one-sided test, use the option 
PDIFF=CONTROLL (for lower-tail tests when the alternative hypothesis states that a group’s mean  
is less than the control group’s mean) or PDIFF=CONTROLU (for upper-tail tests when the alternative 
hypothesis states that a group’s mean is greater than the control group’s mean). 
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Control Plots

8 3  

LS-mean control plots are produced only when you specify PDIFF=CONTROL or ADJUST=DUNNETT 
in the LSMEANS statement, and in this case they are produced by default. The value of the control  
is shown as a horizontal line. The shaded area is bounded by the UDL and LDL (Upper Decision Limit 
and Lower Decision Limit). If the vertical line extends past the shaded area, that means that the group 
represented by that line is significantly different from the control group. 
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Post Hoc Pairwise Comparisons 

 

Example: Use the LSMEANS statement in PROC GLM to produce comparison information about  
the means of the treatments. 

/*st102d05.sas*/ 
proc glm data=sasuser.MGGarlic_Block  
         plots(only)=(controlplot diffplot(center)); 
   class Fertilizer Sector; 
   model BulbWt=Fertilizer Sector; 
   lsmeans Fertilizer / pdiff=all adjust=tukey; 
   lsmeans Fertilizer / pdiff=control('4') adjust=dunnett; 
   lsmeans Fertilizer / pdiff=all adjust=t; 
   title 'Garlic Data: Multiple Comparisons'; 
run; 
quit; 

Multiple LSMEANS statements are permitted, although typically only one type of multiple comparison 
method would be used for each LSMEANS effect. Three different methods are shown for illustration 
here. For this analysis, the garlic growers were unblinded to the fertilizers and number 4 is the chemical 
fertilizer. They might conceivably use Dunnett comparisons if they were only interested in knowing 
whether any of the organic fertilizers created differently sized bulbs compared with the chemical fertilizer. 

Selected PLOTS= options: 

CONTROLPLOT requests a display in which least squares means are compared against a reference 
level. LS-mean control plots are produced only when you specify 
PDIFF=CONTROL or ADJUST=DUNNETT in the LSMEANS statement,  
and in this case they are produced by default. 

DIFFPLOT modifies the diffogram produced by an LSMEANS statement with the PDIFF=ALL 
option (or only PDIFF, because ALL is the default argument). The CENTER option 
marks the center point for each comparison. This point corresponds to the 
intersection of two least squares means. 

Selected LSMEANS statement options:  

PDIFF= requests p-values for the differences, which is the probability of seeing a difference 
between two means that is as large as the observed means or larger if the two 
population means are actually the same. You can request to compare all means using 
PDIFF=ALL. You can also specify which means to compare. For details, see  
the documentation for LSMEANS under the GLM procedure. 

ADJUST= specifies the adjustment method for multiple comparisons. If no adjustment method 
is specified, the Tukey method is used by default. The T option asks that no 
adjustment be made for multiple comparisons. The TUKEY option uses Tukey's 
adjustment method. The DUNNETT option uses Dunnett’s method. For a list  
of available methods, check the documentation for LSMEANS under the GLM 
procedure. 
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 The MEANS statement can be used for multiple comparisons. However, the results can be 
misleading if the groups that are specified have different numbers of observations. 

The following output is for the Tukey LSMEANS comparisons. 

Fertilizer 
BulbWt 

LSMEAN 
LSMEAN 
Number 

1 0.23625000 1 
2 0.21115125 2 
3 0.22330125 3 
4 0.20288875 4 

 
Least Squares Means for effect Fertilizer 

Pr > |t| for H0: LSMean(i)=LSMean(j) 
 

Dependent Variable: BulbWt 
i/j 1 2 3 4 
1  0.0840 0.5699 0.0144 
2 0.0840  0.6186 0.8383 
3 0.5699 0.6186  0.1995 
4 0.0144 0.8383 0.1995  

The first part of the output shows the means for each group. The second part of the output shows p-values 
from pairwise comparisons of all possible combinations of means. Notice that row 2/column 4 has the 
same p-value as row 4/column 2 because the same two means are compared in each case. Both are 
displayed as a convenience to the user. Notice also that row 1/column 1, row 2/column 2, and so on, are 
blank, because it does not make any sense to compare a mean to itself. 

The only significant pairwise difference is between fertilizer 1 and fertilizer 4 (p-value=0.0144). 

The Least Square Means are shown graphically in the mean plot. The Tukey-adjusted differences among 
the LSMEANS are shown in the diffogram. 
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The solid line shows the significant difference between fertilizers 1 and 4. (The confidence limit for  
the difference does not cross the diagonal equivalence line.) 

The following output is for the Dunnett LSMEANS comparisons: 

Fertilizer 
BulbWt 

LSMEAN 
H0:LSMean=Control 

Pr > |t| 
1 0.23625000 0.0080 
2 0.21115125 0.7435 
3 0.22330125 0.1274 
4 0.20288875  

In this case, the first three fertilizers are compared to fertilizer 4, the chemical fertilizer. Even though  
the mean weights of garlic bulbs using any of the three organic methods are all greater than the mean 
weight of garlic bulbs grown using the chemical fertilizer, only fertilizer 1 can be said to be statistically 
significantly better. 
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The Control plot is below: 

 

This plot corresponds to the tables that were summarized. The horizontal line is drawn at the least squared 
mean for group 4, which is 0.20289. The three other means are represented by the tops of the vertical 
lines extending from the horizontal control line. The only line that extended beyond the shaded area of 
nonsignificance is the line for fertilizer 1. That shows graphically that the mean bulb weight for fertilizer 
1 is significantly different from the mean bulb weight for fertilizer 4. 
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Finally, for comparison, the t tests are shown, which do not adjust for multiple comparisons and are 
therefore more liberal than tests that do control for experimentwise error: 

Fertilizer 
BulbWt 

LSMEAN 
LSMEAN 
Number 

1 0.23625000 1 
2 0.21115125 2 
3 0.22330125 3 
4 0.20288875 4 

 
Least Squares Means for effect Fertilizer 

Pr > |t| for H0: LSMean(i)=LSMean(j) 
 

Dependent Variable: BulbWt 
i/j 1 2 3 4 
1  0.0195 0.2059 0.0029 
2 0.0195  0.2342 0.4143 
3 0.2059 0.2342  0.0523 
4 0.0029 0.4143 0.0523  

The p-values in this table are all smaller than those in the Tukey table. In fact, using this method shows 
one additional significant pairwise difference. Fertilizer 1 is significantly different from fertilizer 2 
(p=0.0195). The comparison between 3 and 4 is nearly significant at alpha=0.05 (p=0.0523). 
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The diffogram shows the additional significant difference: 
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Exercises 

 

4.   Post Hoc Pairwise Comparisons 

Consider again the analysis of the sasuser.Ads1 data set. There was a statistically significant 
difference among means for sales for the different types of advertising. Perform a post hoc test to look 
at the individual differences among means for the advertising campaigns. 

a.   Conduct pairwise comparisons with an experimentwise error rate of a=0.05. (Use the Tukey 
adjustment.) Which types of advertising are significantly different? 

b.   Use display (case sensitive) as the control group and do a Dunnett comparison of all other 
advertising methods to see whether those methods resulted in significantly different amounts  
of sales compared with display ads in stores. 
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2.5 Two-Way ANOVA with Interactions 

88

Objectives
 Fit a two-way ANOVA model.
 Detect interactions between factors.
 Analyze the treatments when there is a significant 

interaction.

8 8  

89

n-Way ANOVA

8 9

Response

Continuous

More  than
1  Predictor

n-Way
ANOVA

Categorical
Predictor

1  Predictor

One-Way
ANOVA

 

In the previous section, you considered the case where you had one categorical predictor and a blocking 
variable. In this section, consider a case with two categorical predictors. In general, any time you have 
more than one categorical predictor variable and a continuous response variable, it is called n-way 
ANOVA. The n can be replaced with the number of categorical predictor variables. 

The analysis for a randomized block design is actually a special type of n-way ANOVA.  
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Drug Example

9 0

The purpose of the study is to look at the effect of a new 
prescription drug on blood pressure.

 

Example: Data were collected in an effort to determine whether different dose levels of a given drug 
have an effect on blood pressure for people with one of three types of heart disease. The data 
are in the sasuser.Drug data set. 

The data set contains the following variables: 

DrugDose dosage level of drug (1, 2, 3, 4), corresponding to (Placebo, 50 mg, 100 mg, 200 mg) 

Disease heart disease category 

BloodP change in diastolic blood pressure after 2 weeks treatment 
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The Model

9 1  

Yijk the observed BloodP for each subject  

µ the overall base level of the response, BloodP 

ai the effect of the ith Disease 

βj the effect of the jth DrugDose 

(aβ)ij the effect of the interaction between the ith Disease and the jth DrugDose 

eijk error term, or residual 

In the model, the following is assumed: 
• Observations are independent. 
• Error terms are normally distributed for each treatment. 
• Variances are equal across treatments. 

 Verifying ANOVA assumptions with more than two variables is discussed in the Statistics 2: 
ANOVA and Regression class. 
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Interactions

9 2  

An interaction occurs when the differences between group means on one variable change at different 
levels of another variable. 

The average blood pressure change over different doses was plotted in mean plots and then connected for 
disease A and B. 

In the left plot above, different types of disease show the same change across different levels of dose. 

In the right plot, however, as the dose increases, average blood pressure decreases for those with disease 
A, but increases for those with disease B. This indicates an interaction between the variables DrugDose 
and Disease. 

When you analyze an n-way ANOVA with interactions, you should first look at any tests for interaction 
among factors. 

If there is no interaction between the factors, the tests for the individual factor effects can be interpreted 
as true effects of that factor. 

If an interaction exists between any factors, the tests for the individual factor effects might be misleading, 
due to masking of the effects by the interaction. This is especially true for unbalanced data. 

In the previous section, you used a blocking variable and a categorical predictor as effects in the model.  
It is generally assumed that blocks do not interact with other factors. In this section, neither independent 
variable is a blocking variable. An interaction between the two can be hypothesized and tested. 
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Nonsignificant Interaction

( ) ijkijjiijkY eaββaµ ++++=

ijkjiijkY eβaµ +++=

         

         
  

 

When the interaction is not statistically significant, the main effects can be analyzed with the model  
as originally written. This is generally the method used when analyzing designed experiments. 

However, even when analyzing designed experiments, some statisticians suggest that if the interaction  
is nonsignificant, the interaction effect can be deleted from the model and then the main effects are 
analyzed. This increases the power of the main effects tests. 

Neter, Kutner, Wasserman, and Nachtsheim (1996) suggest both guidelines for when to delete  
the interaction from the model: 
• There are fewer than five degrees of freedom for the error. 
• The F value for the interaction term is < 2. 

 When you analyze data from an observational study, it is more common to delete  
the non-significant interaction from the model and then analyze the main effects. 
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Two-Way ANOVA with Interactions 

 

Before conducting an analysis of variance, you should explore the data. 

Presume that the initial data exploration was completed (output not shown here) and that no particular 
concerns were noted about unusual data values or the distribution of the data. During this exploration,  
you determine that the sample sizes for all treatments are not equal. The researchers recruited 240 patients 
(80 per heart disease category), but only 170 were randomized into the trial. 
/*st102d06.sas*/  /*Part A*/ 
proc print data=sasuser.drug(obs=10); 
   title 'Partial Listing of Drug Data Set'; 
run; 

PROC PRINT Output 
Obs PatientID DrugDose Disease BloodP 

1 69 2 B 13 
2 162 4 A -47 
3 181 1 B 12 
4 209 4 A -4 
5 308 2 A 4 
6 331 4 C 37 
7 340 4 C -19 
8 350 1 B -9 
9 360 2 B -17 

10 363 4 A -41 

Negative values for BloodP mean that diastolic blood pressure was reduced, on average, by that amount. 
Positive values mean that blood pressure was raised, on average. 
/*st102d06.sas*/  /*Part B*/ 
proc format; 
   value dosefmt 1='Placebo' 
                 2='50 mg' 
                 3='100 mg' 
                 4='200 mg'; 
run; 
 
proc means data=sasuser.drug 
           mean var std nway; 
   class Disease DrugDose; 
   var BloodP; 
   format DrugDose dosefmt.; 
   output out=means mean=BloodP_Mean; 
   title 'Selected Descriptive Statistics for Drug Data Set'; 
run; 
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Selected PROC MEANS statement: 

OUTPUT This statement creates an output data set that contains values and statistics requested  
in the statement. 

Selected PROC MEANS statement option: 

NWAY When you include CLASS variables, NWAY specifies that the output data set contains only 
statistics for the observations with the highest _TYPE_ and _WAY_ values. NWAY 
corresponds to the combination of all class variables. 

PROC MEANS Output 
Analysis Variable : BloodP 

Disease DrugDose 
N 

Obs Mean Variance Std Dev 
A Placebo 12 1.3333333 183.1515152 13.5333483 

50 mg 16 -9.6875000 356.7625000 18.8881577 
100 mg 13 -26.2307692 329.0256410 18.1390640 
200 mg 18 -22.5555556 445.0849673 21.0970369 

B Placebo 15 -8.1333333 285.9809524 16.9109714 
50 mg 15 5.4000000 479.1142857 21.8886794 
100 mg 14 24.7857143 563.7197802 23.7427838 
200 mg 13 23.2307692 556.3589744 23.5872630 

C Placebo 14 0.4285714 411.8021978 20.2929100 
50 mg 13 -4.8461538 577.6410256 24.0341637 
100 mg 14 -5.1428571 195.5164835 13.9827209 
200 mg 13 1.3076923 828.5641026 28.7847894 

The mean blood pressure reduction seemed to change at different levels of DrugDose. These changes, 
however, do not seem to follow a consistent pattern across Disease categories. 

To further explore the numerous treatments, examine the PROC MEANS output graphically. 
/*st102d06.sas*/  /*Part C*/ 
proc sgplot data=means; 
   series x=DrugDose y=BloodP_Mean / group=Disease markers; 
   xaxis integer; 
   title 'Plot of Stratified Means in Drug Data Set'; 
   format DrugDose dosefmt.; 
run; 
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The SERIES statement creates a line plot. 

Selected SERIES statement option: 

MARKERS adds data point markers to the series plot data points. 

Selected AXIS statement: 

XAXIS INTEGER forces the X-axis to have tick marks only at integer values. 

PROC SGPLOT Output 

 
From the graph, the relationship is clearer. For disease type A, blood pressure falls to a greater degree  
as the drug level increases through 100 mg, and then the change levels off. For disease type B, blood 
pressure climbs to a greater degree as the drug level increases through 100 mg, and then the change levels 
off. For disease type C, blood pressure change is relatively unchanged for different drug levels. In fact, 
the average change score stays close to 0, implying that the drug had neither positive nor negative effects 
on these patients, regardless of dose. This plot is exploratory, and helps you plan your analysis. Later you 
see similar plots output directly from PROC GLM. 
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You can use the GLM procedure to discover whether these differences and their interactions are 
statistically significant. 
/*st102d06.sas*/  /*Part D*/ 
proc glm data=sasuser.drug order=internal; 
   class DrugDose Disease; 
   model Bloodp=DrugDose Disease DrugDose*Disease; 
   title 'Analyze the Effects of DrugDose and Disease'; 
   title2 'Including Interaction'; 
   format DrugDose dosefmt.; 
run; 
quit; 

Selected PROC GLM option: 

ORDER=DATA | FORMATTED | FREQ | INTERNAL  
specifies the sorting order for the levels of all classification variables. The ordering is important 
for the plot in this case. 

As seen in the MODEL statement, the interaction term can be added to the model by using a * to separate 
the two main effects. It does not need to be created in a DATA step. 

PROC GLM Output 
Class Level Information 

Class Levels Values 
DrugDose 4 Placebo 50 mg 100 mg 200 mg 
Disease 3 A B C 

 
Number of Observations Read 170 
Number of Observations Used 170 

The next part of the output shows the source table with the F test for the overall model. This tests the null 
hypothesis that none of the effects in the model is statistically different. In other words, that there are  
no differences among the 12 group means (one for each DrugDose*Disease combination). 

Source DF 
Sum of 

Squares Mean Square F Value Pr > F 
Model 11 36476.8353 3316.0759 7.66 <.0001 
Error 158 68366.4589 432.6991   
Corrected Total 169 104843.2941    

 
R-Square Coeff Var Root MSE BloodP Mean 
0.347918 -906.7286 20.80142 -2.294118 

The BloodP Mean value indicates that the average blood pressure change over all observations  
is-2.294118. (the same value as would be obtained using PROC MEANS.) The R square for this model  
is 0.347918. 

The p-value is <.0001. Presuming an alpha equal to 0.05, you reject the null hypothesis and conclude that 
at least one treatment mean is different from one other treatment mean. Which factor(s) explain this 
difference? 

The next part of the output shows tests of the main effects and the interaction. 
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Source DF Type I SS Mean Square F Value Pr > F 
DrugDose 3 54.03137 18.01046 0.04 0.9886 
Disease 2 19276.48690 9638.24345 22.27 <.0001 
DrugDose*Disease 6 17146.31698 2857.71950 6.60 <.0001 

 
Source DF Type III SS Mean Square F Value Pr > F 
DrugDose 3 335.73526 111.91175 0.26 0.8551 
Disease 2 18742.62386 9371.31193 21.66 <.0001 
DrugDose*Disease 6 17146.31698 2857.71950 6.60 <.0001 

The Type I SS are model-order dependent. Each effect is adjusted only for the preceding effects in the 
model. They are also known as sequential sums of squares. They are useful in cases where the marginal 
(additional) effect for adding terms in a specific order is important. An example is a test of polynomials, 
where X, X*X, and X*X*X are in the MODEL statement. Each term is only tested controlling for a lower 
order term. The TYPE I SS values are additive. They sum to the Model Sum of Squares for the overall 
model. 

The Type III sums of squares are commonly called partial sums of squares. The Type III sum of squares 
for a particular variable is the increase in the model sum of squares due to adding the variable to a model 
that already contains all the other variables in the model. Type III sums of squares, therefore, do not 
depend on the order in which the explanatory variables are specified in the model. The Type III SS values 
are not generally additive (except in a completely balanced design). The values do not necessarily sum  
to the Model SS. 

You will generally interpret and report results based on the Type III SS. 

You should consider the test for the interaction first, because if there is an interaction, then by definition 
this means that the effect of each main effect is different at each level of the other main effect. The 
p-value for DrugDose*Disease is <.0001. Presuming an alpha of 0.05, you reject the null hypothesis.  
You have sufficient evidence to conclude that there is an interaction between the two factors. As shown  
in the graph, the effect of the level of drug changes for different disease types. With ODS Graphics,  
you get an interaction plot, as well. 
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This plot is similar to the mean plot from PROC SGPLOT. 

Because of the interaction, you do not know the effect of DrugDose at any particular level of Disease. 
The LSMEANS statement can be used to test the effect of DrugDose at each level of Disease. 
/*st102d06.sas*/  /*Part E*/ 
ods graphics off; 
ods select LSMeans SlicedANOVA; 
proc glm data=sasuser.drug order=internal; 
   class DrugDose Disease; 
   model Bloodp=DrugDose Disease DrugDose*Disease; 
   lsmeans DrugDose*Disease / slice=Disease; 
   title 'Analyze the Effects of DrugDose'; 
   title2 'at Each Level of Disease'; 
   format DrugDose dosefmt.; 
run; 
quit; 
ods graphics on; 
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Selected ODS statement: 

ODS SELECT specifies output objects for ODS destinations. To specify an output object, you need  
to know which output objects your SAS program produces. The ODS TRACE 
statement writes to the SAS log a trace record that includes the path, the label,  
and other information about each output object that your SAS program produces.  
The SAS documentation for each PROC also lists output object names. 

Selected LSMEANS statement option: 

SLICE= specifies effects within which to test for differences between interaction LS-mean 
effects. This can produce what are known as tests of simple effects (Winer 1971).  
For example, suppose that A*B is significant and you want to test for the effect  
of A within each level of B. The appropriate LSMEANS statement is as follows: 
lsmeans A*B / slice=B; 

PROC GLM Output 

The first table is a report of the least squared mean for each unique DrugDose*Disease combination. 

DrugDose Disease 
BloodP 

LSMEAN 
Placebo A 1.3333333 
Placebo B -8.1333333 
Placebo C 0.4285714 
50 mg A -9.6875000 
50 mg B 5.4000000 
50 mg C -4.8461538 
100 mg A -26.2307692 
100 mg B 24.7857143 
100 mg C -5.1428571 
200 mg A -22.5555556 
200 mg B 23.2307692 
200 mg C 1.3076923 

The second table displays a test of the effect of DrugDose at each level of Disease. 
DrugDose*Disease Effect Sliced by Disease for BloodP 

Disease DF 
Sum of 

Squares Mean Square F Value Pr > F 
A 3 6320.126747 2106.708916 4.87 0.0029 
B 3 10561 3520.222833 8.14 <.0001 
C 3 468.099308 156.033103 0.36 0.7815 

The DrugDose effect is significant when used in patients with either disease A or disease B, but not  
in patients with disease C. 

Given all of this information, it seems that you would want to aggressively treat blood pressure in people 
with disease A with high doses of the drug. For those with disease B (perhaps caused by a traumatic 
event), treating with the drug at all would be a mistake. For those with disease C, there seems  
to be no effect on blood pressure. 

ms-its:C:\Program%20Files\SAS\SASFoundation\9.2\core\help\statug.chm::/statug.hlp/statug_glm_sect057.htm#wine_b_71
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Exercises 

 

5.   Performing Two-Way ANOVA 

Consider an experiment to test three different brands of concrete and see whether an additive makes 
the cement in the concrete stronger. Thirty test plots are poured and the following features are 
recorded in the sasuser.concrete data set: 

Strength  the measured strength of a concrete test plot 

Additive whether an additive was used in the test plot 

Brand  the brand of concrete being tested 

a.   Use the MEANS procedure to examine the data. Output the means to a data set and then plot them 
using the SGPLOT procedure, and put Strength on the Y axis, Additive on the X axis, and then 
stratify by Brand. What information can you obtain from looking at the data? 

b.   Test the hypothesis that the means are equal, making sure to include an interaction term if the 
results from PROC SGPLOT indicate that would be advisable. What conclusions can you reach  
at this point in your analysis? 

c.   Do the appropriate multiple comparisons test for statistically significant effects? 
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98

2.09 Multiple Answer Poll
A study is conducted to compare the average monthly 
credit card spending for males versus females. Which 
statistical method might be used?

a. One-sample t test
b. Two-sample t test
c. One-way ANOVA
d. Two-way ANOVA

9 8  
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2.6 Solutions 

Solutions to Exercises 

1.   Using PROC TTEST for Comparing Groups 

Assess whether the treatment group changed the same amount as the control group. Use a two-sided  
t test. 
/*st102s01.sas*/ 
proc ttest data=sasuser.German plots(shownull)=interval; 
   class Group; 
   var Change; 
   title "German Grammar Training, Comparing Treatment to Control"; 
run; 

a.   Do the two groups appear to be approximately normally distributed? 
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The plots show evidence supporting approximate normality in both groups. 

b.   Do the two groups have approximately equal variances? 

From the bottom of the PROC TTEST output: 
Equality of Variances 

Method Num DF Den DF F Value Pr > F 
Folded F 14 12 2.97 0.0660 

Because the p-value for the Equality of Variances test is greater than the alpha level of 0.05, 
you would not reject the null hypothesis. This conclusion supports the assumption of equal 
variance (the null hypothesis being tested here). 

c.   Does the new teaching technique seem to result in significantly different change scores compared 
with the standard technique? 

Group N Mean Std Dev Std Err Minimum Maximum 
Control 13 6.9677 8.6166 2.3898 -6.2400 19.4100 
Treatment 15 11.3587 14.8535 3.8352 -17.3300 32.9200 
Diff (1-2)  -4.3910 12.3720 4.6882   

 
Group Method Mean 95% CL Mean Std Dev 95% CL Std Dev 
Control  6.9677 1.7607 12.1747 8.6166 6.1789 14.2238 
Treatment  11.3587 3.1331 19.5843 14.8535 10.8747 23.4255 
Diff (1-2) Pooled -4.3910 -14.0276 5.2457 12.3720 9.7432 16.9550 
Diff (1-2) Satterthwaite -4.3910 -13.7401 4.9581    

 
Method Variances DF t Value Pr > |t| 
Pooled Equal 26 -0.94 0.3576 
Satterthwaite Unequal 22.947 -0.97 0.3413 
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The p-value for the Pooled (Equal Variance) test for the difference between the two means 
shows that the two groups are not statistically significantly different. Therefore, there is not 
strong enough evidence to say conclusively that the new teaching technique is different from 
the old. The Difference Interval plot displays these conclusions graphically. 

 

The confidence interval includes the value zero, indicating a lack of statistical significance  
of the mean difference. 

2.   Analyzing Data in a Completely Randomized Design 

a.   Examine the data. Use the MEANS (using the SKEWNESS and KURTOSIS options in the PROC 
MEANS statement) and SGPLOT procedures. What information can you obtain from looking  
at the data? 

/*st102s02.sas*/  /*Part A*/ 
proc means data=sasuser.Ads printalltypes n mean std skewness  
   kurtosis; 
   var Sales; 
   class Ad; 
   title 'Descriptive Statistics of Sales by Ad Type'; 
run; 
 
proc sgplot data=sasuser.Ads; 
   vbox Sales / category=Ad datalabel=Sales; 
   title "Box and Whisker Plots of Sales by Ad Type"; 
run; 

 
Analysis Variable : Sales 

N 
Obs N Mean Std Dev Skewness Kurtosis 
144 144 66.8194444 13.5278282 -0.2547089 -0.1295813 
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Analysis Variable : Sales 

Ad 
N 

Obs N Mean Std Dev Skewness Kurtosis 
display 36 36 56.5555556 11.6188134 0.3456470 0.0256814 
paper 36 36 73.2222222 9.7339204 -0.0474705 -0.5475341 
people 36 36 66.6111111 13.4976776 -0.5998808 -0.2130516 
radio 36 36 70.8888889 12.9676031 -0.2172278 1.6565242 

 

It appears that the in-store display mean is lower than the others. The value display has  
a positive outlier, and radio has outliers in both directions. 

b.   Test the hypothesis that the means are equal. Be sure to check that the assumptions of the analysis 
method that you choose are met. What conclusions can you reach at this point in your analysis? 

/*st102s02.sas*/  /*Part B*/ 
proc glm data=sasuser.Ads plots=diagnostics; 
   class Ad; 
   model Sales=Ad; 
   means Ad / hovtest; 
   title 'Testing for Equality of Ad Type on Sales'; 
run; 
quit; 
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Both the histogram and Q-Q plot show that the residuals seem normally distributed  
(one assumption for ANOVA). 

Levene's Test for Homogeneity of Sales Variance 
ANOVA of Squared Deviations from Group Means 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 
Ad 3 154637 51545.6 1.10 0.3532 
Error 140 6586668 47047.6   

The Levene’s Test for Homogeneity of Variance shows a p-value greater than alpha. 
Therefore, do not reject the hypothesis of homogeneity of variances (equal variances across 
Ad types). This assumption for ANOVA is met. 

Class Level Information 
Class Levels Values 
Ad 4 display paper people radio 
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Number of Observations Read 144 
Number of Observations Used 144 

 

Source DF 
Sum of 

Squares Mean Square F Value Pr > F 
Model 3 5866.08333 1955.36111 13.48 <.0001 
Error 140 20303.22222 145.02302   
Corrected Total 143 26169.30556    

 
R-Square Coeff Var Root MSE Sales Mean 
0.224159 18.02252 12.04255 66.81944 

 
Source DF Type I SS Mean Square F Value Pr > F 
Ad 3 5866.083333 1955.361111 13.48 <.0001 

 
Source DF Type III SS Mean Square F Value Pr > F 
Ad 3 5866.083333 1955.361111 13.48 <.0001 

 
 

The overall F value from the analysis of variance table is associated with a p-value less than 
or equal to .0001. Presuming that all assumptions of the model are valid, you know that  
at least one treatment mean is different from one other treatment mean. At this point, you 
do not know which means are significantly different. 

3.   Analyzing Data in a Randomized Block Design 

Test the hypothesis that the means are equal. Include all of the variables in your MODEL statement.  
/*st102s03.sas*/ 

proc glm data=sasuser.Ads1 plots(only)=diagnostics; 
   class Ad Area; 
   model Sales=Ad Area; 
   title 'ANOVA for Randomized Block Design'; 
run; 
quit; 
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Partial PROC GLM Output 
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The Q-Q plot of residuals indicates that the normality assumption for ANOVA is met. 
Class Level Information 

Class Levels Values 
Ad 4 display paper people radio 
Area 18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

 
Number of Observations Read 144 
Number of Observations Used 144 

 

Source DF 
Sum of 

Squares Mean Square F Value Pr > F 
Model 20 15131.38889 756.56944 8.43 <.0001 
Error 123 11037.91667 89.73916   
Corrected Total 143 26169.30556    

The ANOVA table shows that there is some difference in mean sales level across Ad types or across 
geographic areas (or both). 

R-Square Coeff Var Root MSE Sales Mean 
0.578211 14.17712 9.473076 66.81944 

 
Source DF Type I SS Mean Square F Value Pr > F 
Ad 3 5866.083333 1955.361111 21.79 <.0001 
Area 17 9265.305556 545.017974 6.07 <.0001 

 
Source DF Type III SS Mean Square F Value Pr > F 
Ad 3 5866.083333 1955.361111 21.79 <.0001 
Area 17 9265.305556 545.017974 6.07 <.0001 

a.   What can you conclude from your analysis?  

The p-value for Ad (<.0001) indicates that there was some difference in sales among  
the advertising campaign types, when controlling for Area. 

b.   Was adding the blocking factor Area into the design and analysis detrimental to the test of Ad? 

The large (statistically significant) F value for Area gives evidence that area of the country 
was a useful factor to block on. It was definitely not detrimental. 

4.   Post Hoc Pairwise Comparisons 

a.   Conduct pairwise comparisons with an experimentwise error rate of a=0.05. (Use the Tukey 
adjustment.) Which types of advertising are significantly different? 
/*st102s04.sas*/  /*Part A*/ 
proc glm data=sasuser.Ads1 plots(only)=diffplot(center); 
   class Ad Area; 
   model Sales=Ad Area; 
   lsmeans Ad / pdiff=all adjust=tukey; 
   title 'Tukey Pairwise Differences for Ad Types on Sales'; 
run; 
quit; 
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Partial Output 

Ad Sales LSMEAN 
LSMEAN 
Number 

display 56.5555556 1 
paper 73.2222222 2 
people 66.6111111 3 
radio 70.8888889 4 

 
Least Squares Means for effect Ad 

Pr > |t| for H0: LSMean(i)=LSMean(j) 
 

Dependent Variable: Sales 
i/j 1 2 3 4 
1  <.0001 <.0001 <.0001 
2 <.0001  0.0190 0.7233 
3 <.0001 0.0190  0.2268 
4 <.0001 0.7233 0.2268  

 

 
The Tukey comparisons show significant differences between display and all other types  
of advertising and between paper and people (p=0.0190). 
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b.   Use display (case sensitive) as the control group and do a Dunnett comparison of all other 
advertising methods to see whether those methods resulted in significantly different amounts of 
sales compared with display ads in stores. 
/*st102s04.sas*/  /*Part B*/ 
proc glm data=sasuser.Ads1 plots(only)=controlplot; 
   class Ad Area; 
   model Sales=Ad Area; 
   lsmeans Ad / pdiff=control('display') adjust=dunnett; 
   title 'Dunnett Pairwise Differences for Ad Types on Sales'; 
run; 
quit; 

 

Ad Sales LSMEAN 
H0:LSMean=Control 

Pr > |t| 
display 56.5555556  
paper 73.2222222 <.0001 
people 66.6111111 <.0001 
radio 70.8888889 <.0001 

 

All other advertising campaigns resulted in significantly different (higher, in this case) 
average sales than display. 
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5.   Performing Two-Way ANOVA 

a.   Use the MEANS procedure to examine the data. Output the means to a data set and then plot them 
using the SGPLOT procedure, and put Strength on the Y axis, Additive on the X axis, and then 
stratify by Brand. What information can you obtain from looking at the data? 
/*st102s05.sas*/  /*Part A*/ 
proc means data=sasuser.concrete 
           mean var std nway; 
   class Brand Additive; 
   var Strength; 
   output out=means mean=Strength_Mean; 
   title 'Selected Descriptive Statistics for Concrete Data Set'; 
run; 
 
proc sgplot data=means; 
   series x=Additive y=Strength_Mean / group=Brand markers; 
   xaxis integer; 
   title 'Plot of Stratified Means in Concrete Data Set'; 
run; 

 
Analysis Variable : Strength 

Brand Additive 
N 

Obs Mean Variance Std Dev 
Consolidated reinforced 5 25.8000000 5.6300000 2.3727621 

standard 5 22.6000000 2.3450000 1.5313393 
EZ Mix reinforced 5 27.2600000 3.8430000 1.9603571 

standard 5 24.4000000 14.2350000 3.7729299 
Graystone reinforced 5 30.6600000 1.7930000 1.3390295 

standard 5 25.2800000 9.8920000 3.1451550 

 
/*Alternative code to generate same plot but not using the MEANS procedure.*/ 
proc sgplot data=sasuser.concrete; 
   vline Additive / group=Brand stat=mean response=Strength; 
run;  
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The difference between means (reinforced minus standard) for Consolidated is 3.20; the 
mean difference for EZ Mix is 2.86; and for Graystone, the difference is approximately 5.38. 
It appears that the difference between concretes using standard and reinforced cements 
differs by brand. In other words, it appears that there is an interaction between Additive 
and Brand. That means that an interaction term in the ANOVA model would be appropriate 
to assess statistical significance of the interaction. 

b.   Test the hypothesis that the means are equal, making sure to include an interaction term if the 
results from PROC SGPLOT indicate that would be advisable. What conclusions can you reach at 
this point in your analysis? 
/*st102s05.sas*/  /*Part B*/ 
proc glm data=sasuser.concrete; 
   class Additive Brand; 
   model Strength=Additive Brand Additive*Brand; 
   title 'Analyze the Effects of Additive and Brand'; 
   title2 'on Concrete Strength'; 
run; 
quit; 
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Class Level Information 
Class Levels Values 
Additive 2 reinforced standard 
Brand 3 Consolidated EZ Mix Graystone 

 
Number of Observations Read 30 
Number of Observations Used 30 

 

Source DF 
Sum of 

Squares Mean Square F Value Pr > F 
Model 5 189.9080000 37.9816000 6.04 0.0009 
Error 24 150.9520000 6.2896667   
Corrected Total 29 340.8600000    

 
R-Square Coeff Var Root MSE Strength Mean 
0.557144 9.645849 2.507921 26.00000 

 
Source DF Type I SS Mean Square F Value Pr > F 
Additive 1 109.0613333 109.0613333 17.34 0.0003 
Brand 2 71.4980000 35.7490000 5.68 0.0095 
Additive*Brand 2 9.3486667 4.6743333 0.74 0.4862 

 
Source DF Type III SS Mean Square F Value Pr > F 
Additive 1 109.0613333 109.0613333 17.34 0.0003 
Brand 2 71.4980000 35.7490000 5.68 0.0095 
Additive*Brand 2 9.3486667 4.6743333 0.74 0.4862 
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There is no significant interaction between Additive and Brand, even though the plot shows 
slightly different slopes among the three brands of concrete. At this point, you can choose  
to remove the interaction term from the model and, if still significant, conclude that there  
is a difference in additive types. 

c.   Do the appropriate multiple comparisons test for statistically significant effects? 

Because the interaction was not significant, in many cases the interaction term can  
be removed from the model. A multiple comparisons option in the LSMEANS statement  
is unnecessary because there are only two levels of the Additive variable. Therefore,  
the p-value for Additive will also be the p-value for the comparison between group means 
for standard and reinforced. 
/*st102s05.sas*/  /*Part C*/ 
ods graphics off; 
proc glm data=sasuser.concrete; 
   class Additive Brand; 
   model Strength=Additive Brand; 
   lsmeans Additive; 
   title 'Analyze the Effects of Additive and Brand'; 
   title2 'on Concrete Strength without Interaction'; 
run; 
quit; 
ods graphics on; 
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Class Level Information 
Class Levels Values 
Additive 2 reinforced standard 
Brand 3 Consolidated EZ Mix Graystone 

 
Number of Observations Read 30 
Number of Observations Used 30 

 

Source DF 
Sum of 

Squares Mean Square F Value Pr > F 
Model 3 180.5593333 60.1864444 9.76 0.0002 
Error 26 160.3006667 6.1654103   
Corrected Total 29 340.8600000    

 
R-Square Coeff Var Root MSE Strength Mean 
0.529717 9.550094 2.483024 26.00000 

 
Source DF Type I SS Mean Square F Value Pr > F 
Additive 1 109.0613333 109.0613333 17.69 0.0003 
Brand 2 71.4980000 35.7490000 5.80 0.0083 

 
Source DF Type III SS Mean Square F Value Pr > F 
Additive 1 109.0613333 109.0613333 17.69 0.0003 
Brand 2 71.4980000 35.7490000 5.80 0.0083 

The test for Additive is still significant. There is a difference between standard and 
reinforced. The estimate of the two least squared means is found in the results for  
LS Means. 

Additive 
Strength 
LSMEAN 

reinforced 27.9066667 
standard 24.0933333 

Reinforced additive in cement in the concrete seems to add more strength than a standard 
additive does. The mean difference is about 3.8. 
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Solutions to Student Activities (Polls/Quizzes) 

13

2.01 Multiple Answer Poll – Correct Answer
How do you tell PROC TTEST that you want to do a 
two-sample t test?

a. SAMPLE=2 option 
b. CLASS statement
c. GROUPS=2 option
d. PAIRED statement

 

41

2.02 Multiple Choice Poll – Correct Answer
If you have 20 observations in your ANOVA and you 
calculate the residuals, to which of the following would 
they sum?
a. -20
b. 0
c. 20
d. 400
e. Unable to tell from the information given

4 1  
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43

2.03 Multiple Choice Poll – Correct Answer
If you have 20 observations in your ANOVA and you 
calculate the squared residuals, to which of the following 
would they sum?
a. -20
b. 0
c. 20
d. 400
e. Unable to tell from the information given

4 3  

55

2.04 Multiple Choice Poll – Correct Answer
Which part of the ANOVA tables contains the variation 
due to nuisance factors?
a. Sum of Squares Model
b. Sum of Squares Error
c. Degrees of Freedom

5 5  
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61

2.05 Multiple Choice Poll – Correct Answer
In a block design, which part of the ANOVA table 
contains the variation due to the nuisance factor?
a. Sum of Squares Model
b. Sum of Squares Error
c. Degrees of Freedom

6 1  

68

2.06 Multiple Answer Poll – Correct Answer
If the blocking variable Area had a very small F value, 
what would be a valid next step? Select all that apply.

a. Remove it from the MODEL statement and rerun 
the analysis.

b. Test an interaction term.
c. Report the F value and plan a new study.

6 8  



 2.6  Solutions 2-97 

Copyright © 2012, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. 

75

2.07 Multiple Choice Poll – Correct Answer
With a fair coin, your probability of getting heads on one 
flip is 0.5. If you flip a coin once and got heads, what is 
the probability of getting heads on the second try?
a. 0.50
b. 0.25
c. 0.00
d. 1.00
e. 0.75

7 5  

77

2.08 Multiple Choice Poll – Correct Answer
With a fair coin, your probability of getting heads on one 
flip is 0.5. If you flip a coin twice, what is the probability of 
getting at least one head out of two?
a. 0.50
b. 0.25
c. 0.00
d. 1.00
e. 0.75

7 7  
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99

2.09 Multiple Answer Poll – Correct Answers
A study is conducted to compare the average monthly 
credit card spending for males versus females. Which 
statistical method might be used?

a. One-sample t test
b. Two-sample t test
c. One-way ANOVA
d. Two-way ANOVA

9 9  


	Chapter 2 Analysis of Variance (ANOVA)
	2.1 Two-Sample t Tests in the TTEST Procedure
	Two-Sample t Test
	Exercises

	2.2 One-Way ANOVA
	Descriptive Statistics across Groups
	The GLM Procedure
	Exercises

	2.3 ANOVA with Data from a Randomized Block Design
	ANOVA with Blocking
	Exercises

	2.4 ANOVA Post Hoc Tests
	Post Hoc Pairwise Comparisons
	Exercises

	2.5 Two-Way ANOVA with Interactions
	Two-Way ANOVA with Interactions
	Exercises

	2.6 Solutions
	Solutions to Exercises
	Solutions to Student Activities (Polls/Quizzes)



