Jessica Xu’s Journey in ROP299

Hello everyone! My name is Jessica Xu, and I’ve just completed my second year in Biochemistry and Statistics at the University of Toronto. This past school year, I’ve had the wonderful opportunity to do a ROP299 project with Dr. Pascal Tyrrell and I’d like to share my experience with you all!

A bit about myself first: in high school, I was always interested in life sciences. My favourite courses were biology and chemistry, and I was certain that I would go to medical school and become a doctor. But when I took my first stats course in first year, I really enjoyed it and I started to become interested in the role of statistics in life sciences. Thus, at the end of my first year, while I was looking through the various ROP courses, I felt that Dr. Tyrrell’s lab was the perfect opportunity to explore my budding interest in this area. I was very fortunate to have an interview with Dr. Tyrrell, and even more fortunate to be offered a position in his lab!

Though it may be obvious, doing a research project when you have no research experience is very challenging! Coming into this lab having taken a statistics course and a few computer science courses in first year, I felt I had a pretty good amount of background knowledge. But as I joined my first lab meeting, I realized I couldn’t be more wrong! Almost every other word being said was a word I’d never heard of before! And so, I realized that there was a lot I needed to learn before I could even begin my project.

I then began on the journey of my project, which was looking at how two dimension reduction techniques, LASSO and SES, performed in an ill-posed problem. It was definitely no easy task! While I had learned a little bit about dimension reduction in my statistics class, I still had a lot to learn about the specific techniques, their applications in medical imaging, and ill-posed problems. I was also very inexperienced in coding, and had to learn a lot of R on my own, and become familiar with the different packages that I would have to use. It was a very tumultuous journey, and I spent a lot of time just trying to get my code to work. Luckily, with help from Amar, I was able to figure out some of the errors and issues I was facing in regards to the code.

I learned a lot about statistics and dimension reduction in this ROP, more than I have learned in any other courses! But most importantly, I had learned a lot about the scientific process and the experience of writing a research paper. If I can provide any advice based on my experience, it’s that sometimes it’s okay to feel lost! It’s not expected of you to have devised a perfect plan of execution for your research, especially when it’s your first time! There will be times that you’ll stray off course (as I often did), but the most valuable lesson that I learned in this ROP is how to get back on track. Sometimes you just need to take a step back, go back to the beginning and think about the purpose of your project and what it is you’re trying to tell people. But it’s not always as easy to realize this. Luckily Dr. Tyrrell has always been there to guide us throughout our projects and to make sure we stay on track by reminding us of the goal of our research. I’m incredibly grateful for all the support, guidance, and time that Dr. Tyrrell has given this past year. It has been an absolute pleasure of having the experience of working in this lab.

Now that I’ve taken my first step into the world of research, with all the new skills and lessons I’ve learned in my ROP, I look forward to all the opportunities and the journey ahead!

Jessica Xu

Jacky Wang’s ROP399 Journey

My name is Jacky Wang, and I am just finishing my third year at the University of Toronto, pursuing a computer science specialist. Looking back on this challenging but incredible year, I was honoured to have the opportunity to work inside Dr. Tyrrell’s lab as part of the ROP399 course. I would love to share my experience studying and working inside the lab.

Looking back, I realize one of the most challenging tasks is getting onboard. I felt a little lost at first when surrounded by loads of new information and technologies that I had little experience with before. Though feeling excited by all the collision of ideas during each meeting, having too many choices sometimes could be overwhelming. Luckily after doing more literature review and with the help of the brilliant researchers in the lab (a big thank you to Mauro, Dimitri, and of course, Dr. Tyrrell), I start to get a better view of the trajectories of each potential project and further determine what to get out from this experience. I did not choose the machine learning projects, though they were looking shiny and promising as always (as a matter of fact, they turned out to be successful indeed). Instead, I was more leaning towards studying the sample size determination methodology, especially the concept of ill-posed problems, which often occur when the researchers make conclusions from models trained on limited samples. It had always been a mystery why I would get different and even contrasting results when replicating someone else’s work on smaller sample sizes. From there, I settled the research topic and moved onto the implementation details.

This year the ROP students are coming from statistics, computer science and biology etc. I am grateful that Dr. Tyrrell is willing to give anyone who has the determination to study in his lab a chance though they may have little research experience and come from various backgrounds. As someone who studies computer science with a limited statistics background, the real challenge lies in understanding all the statistical concepts and designing the experiments. We decided to apply various dimension reduction techniques to study the effect of different sample sizes with many features. I designed experiments around the principal component analysis (PCA) technique while another ROP student Jessica explored the lasso and SES model in the meantime. It was for sure a long and memorable experience with many debugging when implementing the code from scratch. But it was never more rewarding than seeing the successful completion of the code and the promising results.

I feel lucky and grateful that Dr. Tyrell helped me complete my first research project. He broke down the long and challenging research task into clear and achievable subgoals within our reach. After completing each subgoal, I could not even believe it sent us close to the finished line. It felt so different taking an ROP course than attending the regular lessons. For most university courses, most topics are already determined, and the materials are almost spoon-fed to you. But sometimes, I start to lose the excitement of learning new topics, as I am not driven by the curiosity nor the application needs but the pressure of being tested. However, taking the ROP course gives me almost complete control of my study. For ROP, I was the one who decides what topics to explore, how to design the experiment. I could immediately test my understanding and put everything I learned into real applications.

I am so proud of all the skills that I have picked up in the online lab during this unique but special ROP experience. I would like to thank Dr. Tyrrell for giving me this incredible study experience in his lab. There are so many resources out there to reach and so many excellent researchers to seek help from. I would also like to thank all members of the lab for patiently walking me through each challenge with their brilliant insights.

Jacky Wang

MiWord of the Day Is… dimensionality reduction!

Guess what?

You are looking at a real person, not a painting! This is one of the great works by a talented artist Alexa Meade, who paints on 3D objects but creates a 2D painting illusion. Similarly in the world of statistics and machine learning, dimensionality reduction means what it sounds like: reduce the problem to a lower dimension. But only this time, not an illusion.

Imagine a 1x1x1 data point living inside a 2x2x2 feature space. If I ask you to calculate the data density, you will get ½ for 1D, ¼ for 2D and 1/8 for 3D. This simple example illustrates that the data points become sparser in higher dimensional feature space. To address this problem, we need some dimensional reduction tools to eliminate the boring dimensions (dimensions that do not give much information on the characteristics of the data).

There are mainly two approaches when it comes to dimension reduction. One is to select a subset of features (feature selection), the other is to construct some new features to describe the data in fewer dimensions (feature extraction).

Let us consider an example to illustrate the difference. Suppose you are asked to come up features to predict the university acceptance rate of your local high school.

You may discard the “grade in middle school” for its many missing values; discard “date of birth” and “student name” as they are not playing much role in applying university; discard “weight > 50kg” as everyone has the same value; discard “grade in GPA” as it can be calculated. If you have been through a similar process, congratulations! You just performed a dimension reduction by feature selection.

What you have done is removing the features with many missing values, the least correlated features, the features with low variance and one of the highly correlated. The idea behind feature selection is that the data might contain some redundant or irrelevant features and can be removed without losing too much loss information.

Now, instead of selecting a subset of features, you might try to construct some new features from the old ones. For example, you might create a new feature named “school grade” based on the full history of the academic features. If you have been through a thought process like this, you just performed a dimensional reduction by feature extraction

If you would like to do a linear combination, principal component analysis (PCA) is the tool for you. In PCA, variables are linearly combined into a new set of variables, known as the principal components. One way to do so is to give a weighted linear combination of “grade in score”, “grade in middle school” and “recommend letter” …

Now let us use “dimensionality reduction” in a sentence.

Serious: There are too many features in this dataset, and the testing accuracy seems too low. Let us apply dimensional reduction techniques to reduce overfit of our model…

Less serious:

Mom: “How was your trip to Tokyo?”

Me: “Great! Let me just send you a dimensionality reduction version of Tokyo.”

Mom: “A what Tokyo?”

Me: “Well, I mean … photos of Tokyo.”

I’ll see you in the blogosphere…

Jacky Wang