Ethics Schmethics?

 

Today, it may seem obvious that the first step of any research project should be to complete a proposal for ethics review. But why do we need ethical standards? While helping to complete an ethics form for a project I’m working on, I wondered if scientists perhaps made more ‘progress’ before ethical considerations became commonplace. Even if this was the case, research is certainly better now, when institutions and procedures protect patients’ and research subjects’ rights. 

It also seems that scientific research in the 18th and 19th centuries tended to be somewhat more haphazard than it is now, and almost certainly less ethical. For example, Dr. Edward Jenner tested his smallpox inoculation hypothesis for the first time on an eight-year-old
boy in 1796, with little preliminary understanding and no certainty that the patient would not be severely harmed.

Scientists were often fairly independent, acting based on their own curiosity to advance knowledge. Fortunately, research standards have evolved significantly since then. Ethics have been a major part of the transition, as ethical standards help to ensure that scientific research does not cause harm to researchers or subjects. The shocking Stanford Prison Experiment, just one example, shows that physical and psychological damage can occur if study participants’ rights are not upheld through ethics. College students with no criminal record were asked to play the role of prisoners and prison guards, the ‘guards’ became brutal and cruel, while the ‘prisoners’ became stressed and depressed. The experiment was terminated early, after only six days.

Fortunately, much has changed since the emergence of modern science in the 20th century. The current structure of research, including working in teams and undergoing peer review, helps to ensure a high standard of practice. Nevertheless, ethical issues in science remain. Researchers who work with human participants can become quite focused on the minutiae of their work, so Research Ethics Boards have an important mediating role. They provide an experienced, unbiased viewpoint that weighs the potential benefits of the research against any harm that may come to participants. Even if an ethical review sometimes slows the pace of scientific progress, it provides an essential foundation and structure for research, to the benefit of participants and researchers alike.  





Julia Robson

2nd year student at U of T

Kiersten Thomas – Summer 2015 ROP at UofT: Another great student experience… part deux!

Kiersten Thomas – ROP summer 2015

Hello, I’m one of Professor Pascal Tyrrell’s summer ROP students and a second year Immunology Specialist student at the University of Toronto. I have just completed my summer research project investigating the cost-effectiveness of using MRA to evaluate asymptomatic carotid artery stenosis. 


I learned a lot and had an amazing time conducting research with Dr. Eli Lechtman and my ROP partner Indranil Balki. Using TreeAge Pro to create and analyse decision trees, we demonstrated that the additional information gained from an MRA/IPH scan increases the effectiveness of MRA when imaging carotid artery stenosis. 


Our research suggests that the additional information of the presence of intraplaque hemorrhage (IPH) would lead to better patient care, reducing long-term stroke risks. This means that MRA/IPH can be cost-effective or even dominant when compared to the current imaging strategy that uses standard ultrasound as a first-line imaging modality, for evaluating all degrees of asymptomatic carotid artery stenosis. Take a look at my timeline to see some of the highlights of my summer!


Thank you Dr. Pascal for this wonderful summer. 


Kiersten Thomas

Indranil Balki – Summer 2015 ROP at UofT: Another great student experience!

Indranil Balki – ROP Summer 2015

 

I am one of Dr.Pascal’s 2nd year ROP students at the University of Toronto.  This summer, I had an amazing experience into the realm of research working with my partner Kiersten Thomas, mentor Dr. Eli Lechtman, and supervisor Prof. Pascal Tyrrell. This timeline-cum-infographic highlights some of the especially memorable moments of this journey.
Our main project was focused on constructing a computer simulation to model the effect of choosing either MRI or US as a first line imaging modality to diagnose and treat patients with Carotid Artery Disease. This project involved comprehensive literature search, discussions with experts (including the “Trip to Cambridge”), learning computer software and presentations!
Our team’s models’ main finding was that MRI can be both more effective and no more costly than US as a first line diagnosing tool in measuring carotid artery disease.
 

Thanks to Dr. Pascal for allowing me to share my experience on his blog and I hope you enjoy the read!
 
 
Indranil Balki

Another Reason Why a Brain Boo-Boo Is Bad.

Rostam Rashidkhani – YSP 2015



Rostam Rashidkhani is a grade 12 International Baccalaureate student at the Toronto French School and he was a Meds – Youth Summer Program student with me this summer.

Rostam is intrigued by the sciences and enjoys biology, chemistry, and physics in school. He has participated in a number of University of Toronto summer programs and is looking forward to University life!



This summer Rostam looked at what causes brain problems after traumatic brain injury and how best to detect these changes with MRI. Recent brain imaging studies, including those in former professional football players, indicate that persistent brain inflammation after a single moderate head injury or repeated milder traumatic brain injury may be very common, may contribute to cognitive problems. More importantly, the chronic brain inflammation related to traumatic brain injury may be treatable. Looking for chronic traumatic brain inflammation with followup MR may be a way to reduce cognitive impairment.

Well done, Rostam!



Enjoy the read and…


… see you in the blogosphere,

Pascal Tyrrell

An “Egg-cellent” Journey to Investigate Carotid Artery Stenosis in Cambridge, Ontario…





Last Wednesday, my ROP students Kiersten and Indranil, and UofT medical student Eli Lechtman had the opportunity to interview the legendary (see here) Dr. Kim Tysdale – a general practitioner in Cambridge, Ontario.


Why do you ask? Well each year 50,000 Canadians suffer from a stroke with 26% due to carotid artery disease. Carotid artery stenosis is the narrowing of the carotid arteries due to plaque buildup (see atherosclerosis). These plaques can then rupture and create blood clots that travel up to the brain. In turn, these blood clots then get stuck in the brain’s smaller blood vessels, causing a stroke. So plaque = bad and ruptured plaque = worse!


What if we had a clue as to which plaque may rupture? Well, in turns out that the presence of intraplaque hemorrhage (IPH) can help us predict just that! IPH is bleeding within the plaques, which causes them to become more vulnerable (see vulnerable plaque). There is a 6 times greater risk of stroke in people with IPH! And…. a new medical imaging technique called MRIPH imaging allows for visualization of IPH. MRIPH is similar to traditional MRI but highlights the artery walls and looks at the arterial plaques. 


While in Cambridge, Kiersten, Indranil, and Eli presented Dr. Tysdale with an overview of medical imaging techniques for the assessment of carotid artery stenosis with an emphasis on the new MRIPH technique. Informing physicians like Dr. Tysdale which of his patients are more at risk of having vulnerable plaques (by providing information on IPH) could result in patients receiving more appropriate and timely treatment – thereby reducing the number of strokes! 


BTW, we had Dr Tysdale at “hello” (not sure what I am referring to? See here).


So what up with the eggs? Kiersten, Indranil, and Eli also had the chance to tour Dr. Tysdale’s beautiful country house and meet his lovely wife (and nurse!), Eva, who sent everyone home with fresh chicken eggs! Awesome.


Thank you Dr Tysdale for being such a great sport!


Here is their infographic of the trip (great job gang!). Enjoy!

Kiersten Thomas and Indranil Balki – ROP Summer 2015



Stay tuned for more ROP adventures!




Pascal Tyrrell

MiWord of the Day Is… Magnet!

Who hasn’t thought of having Magneto’s powers? No? Maybe you should watch this Magneto trailer for a refresher. 


Ok, now that we all want to be Magneto (secretly at least) what is it that is so appealing with having the power of magnetism? Bill Nye the Science Guy explains it very well in this clip. Have a gander.


In a nutshell, magnetism is a physical phenomena that consists of a field of energy created by “magnets” that attracts or repels other objects. Magnets come in two major flavors: permanent magnets made of materials (such as iron) and electromagnets – the strongest and most widely used in medical imaging. 


Interestingly, it is the sum of the magnetic fields of individual electrons that is responsible for all the fun (see quantum mechanics). In the case of electromagnetism the electric current in a wire produces a magnetic field in the same direction of the current. In the case of a permanent magnet it is the magnetic fields of the naturally occurring electrically charged particles of the atoms that make up the material (iron for example) that are responsible. However, for there to exist a force strong enough to attract or repel another object all of its magnetic ions must have their magnetic fields aligned and contributing to the net magnetization. This is how you can magnetize a needle when stroking it in a uniform directional way with a permanent magnet.





Magnetism is to MRI what radiation is to X-rays. The strength of magnets is measured in gauss and Tesla units. There are 10,000 gauss to a Tesla and the earth’s magnetic field is one half of a gauss. Today most clinical MRIs use superconducting magnets whose strength range up to 4 Tesla! Experimental MRIs can run up to 10 Tesla. Now that is more Magneto’s speed.


The powerful magnets allow for better spacial resolution allowing for better sensitivity of the image. However, all this magnetic strength comes at a cost: the production of chemical shift artifacts – ghosts of things that are not really there. This is why we have radiologists to make sense of it all.


OK. Now you are asking what the heck. Magneto in the X-Men movie was able to rip out the iron from a human so why doesn’t an MRI? Great question. Iron found in the human body is mostly found as ferritin (a type of iron oxide) and is NOT magnetic. The iron in hemoglobin is also NOT magnetic. Bummer. So how does Magneto do it? Well either the movie is not scientifically correct (now that would be a shocker) or possibly he could be drawing on magnetite (another iron oxide) that is magnetic and has been found in trace amounts in the blood and brain. It is so little though that it does not cause any concern for MRI. Oh well, so much for Magneto…

Now for the fun part (see the rules here), using magnet in a sentence by the end of the day:

Serious: Hey Bob, did you know that early MRI machines used permanent magnets?

Less serious: Went for my MRI today. Told them I was worried the MRI would rip all the iron out of my blood like in X-Men. They didn’t even know who Magneto was. Whaaaat?!!

OK, listen to Magnetic by Traphik to decompress and I’ll see you in the blogosphere…

Pascal Tyrrell










MiCUP… Runneth Over?

An interesting quotation from the Hebrew bible. Basically it means that I have sufficient for my needs and I am good with that. So, where am I going with this you ask? Well, let me introduce you to my program MiCUP – Medical imaging Collaborative Undergraduate Program. 


The goal of the program is to bring together students from the faculty of Arts and Sciences and my faculty (Medicine) to learn about medical research in the world of medical imaging. I have a sprinkling of students every term from various programs such as Research Opportunity Program, Independent Studies, Youth Study Program, and MiVIP. It is only a modest number of students BUT provides ample brain power to get some really cool research done. My cup certainly runneth over. 


Have a look below at the timelines from my two recent ROP students.


Great work Kevin and Sylvia!!!




See you in the blogosphere,


Pascal Tyrrell



Kevin Chen ROP F/W 2014

Sylvia Urbanik F/W 2014

Basic Functions and Why You Should Know About Them

No, I did not say “bodily functions”. That is discussed in another blog. We’re talking math today. 


So, my son was doing his homework the other night and yelled out from his room:”Daaaadddyyyy!!! Do you know what a parabola is?” For those of you who do not have teenage children this is code for “can you help me with my homework”. After reliving a few high school memories that came along with the word “parabola” I wondered over to his room to see what the latest homework challenge was going to be…


When helping my kids with their homework, I often think of how important and still relevant some of the basic math is we learnt in high school. I would like to talk a little about basic functions and how they are still used well after you have handed in your last math homework assignment.


Many (most?) scientific laws are expressed as relations between two or more variables – often physical quantities. Next comes the chicken or the egg conundrum. Were the results from an experiment used to formulate “empirical laws” or did we use existing knowledge and math to come up with new theories – that we will invariably later have to test. Welcome to the world of research!


If two variables are related in such a way that one of them (the dependent or response variable) is determined when the other is known (the independent or explanatory variable), then there exists what is termed a functional relationship between the variables.


y = f(x)





For example the relationship of height to weight in humans. In general, the taller we are the heavier we get. This results in what is called a straight-line relationship.













But not all relationships are linear. How about if we were to throw a ball up into the air and measure it’s trajectory? It would look a little like the picture on the left.







Although initially the value of the height of the ball increases with time, there comes a point when the ball stops rising and starts to fall back down to earth. The resulting curve is called – you guessed it – a parabola.




The math functions for the parabola and that of the straight line are actually related. Yes, I am serious! They both belong to the family of math functions called polynomials. In my next posts I will talk a little about how we describe these functions and how we can put them to work for us in the world of medical research.


For now, decompress watching this hilarious movie trailer Biloxi Blues which is all about basic training (you can now relate) and…


… I’ll see you in the blogosphere,




Pascal Tyrrell

MiWord of the Day Is… Xeroradiography!

Who hasn’t done some creative photocopying at some point in their lives? I certainly do NOT condone this type of activity (very naughty) but would you believe me if I were to tell you that for a long while mammography made use of photocopy technology? Yes, I realize this sounds a little funny. Let me explain.


In the 1970s medicine made the association between heavy exposure to radiation for TB and thyroid treatments and the appearance of breast cancer three decades later. A reevaluation of the effects of radiation ensued and a call for ways to minimize exposure to ionizing radiation was made to the industry.


One of the first to answer that call was the radiologist John Wolfe from Detroit Receiving Hospital who in 1966 reported on the advantages of coupling photocopy technology with mammography. Xerox corporation jumped on the idea and developed a commercial unit in 1971 and “xeroradiography” was born! Basically, film from traditional x-ray imaging (yes back then they still used film!) was replaced with a selenium coated aluminum plate that was prepared for the exposure by being electrically charged. The result was that only a short burst of radiation (shorter exposure time means lower dose of radiation) was required to produce a very high quality image.






These xerox mammograms dominated the industry for over 20 years until new technology was developed more recently that provided even finer images with even less radiation. Cool.




Now for the fun part (see the rules here), using Xeroradiography in a sentence by the end of the day:


Serious: Hey Bob, did you know that mammograms produced using xeroradiography were blue? 


Less serious: My friend Jane was scheduled for a mammography. Having heard of xeroradiography reading the MiVIP blog she decided to DIY at her office. Problem was the print kept coming out black and white instead of blue from the Xerox machine…




OK, watch the Copy Cat trailer to decompress (or not?!!!) and I’ll see you in the blogosphere…




Pascal Tyrrell

MRA Is More Cost-Effective than the Current Strategy for Testing > 70% Carotid Stenosis

ROP Research Forum March 5th, 2015 – Kevin Chen





Kevin Chen is a 2nd year research opportunity program student studying neuroscience and
physiology in the University of Toronto Life Sciences Program. His main goal is to get into
medical school and to enjoy the UofT experience as much as possible!

Kevin’s ROP project consisted
of cost effectiveness analysis modeling to explore whether MRA could be a
cost-effective measure in testing and treating patients with carotid stenosis.
Preliminary results showed that in a subset of the population at risk for
carotid stenosis (> 70 %), MRA was dominant over the current strategy of testing with
Doppler Ultrasound. By reducing MRA scan time and by tailoring MRA sequences we believe it possible to extend these findings to include a larger sub-population (> 50 %). More to follow…

Well done, Kevin!

See you in the blogosphere,

Pascal Tyrrell