MiVIP meets AI…

Well, I think it was inevitable. My data science lab has slowly crossed over to the dark side into the world of  Machine Learning and Artificial Intelligence.


Let me apologize for being MIA for so long. Life has been pretty hectic these past months as I have been building the MiDATA program here in the Department of Medical Imaging at the University of Toronto. The good news is that the MiVIP program will now be inviting students to participate in machine learning and artificial intelligence in medical image research.


This summer will include the launch our our MiStats+ML program where we will have students from the department of statistical sciences, computer sciences, and life sciences all work together on ML/AI projects in the MiDATA lab.


Stay tuned as we ramp up and get back to some our previous threads like MiWORD of the day…




See you in the blogosphere,




Pascal

MiWORD of the day is… Mop-top!

Ahhh, the mop-top! I sigh not because I miss the hairdo but because I miss my hair – all of it. In the mid-60s this hair style was made famous by The Beatles. Don’t know who they are (shame on you!) have a listen here for instruction.


Well the mop-top was made popular because the 4 guys who sported the hairdo were crazy successful musicians from England. Their recording company, Electrical Musical Industries (EMI), was also very happy and successful because of the overwhelming record sales (music was sold to listeners on vinyl records back then).


So, what does any of this have to do with medical imaging? Lots actually. The money generated by record sales enabled the EMI basic science researchers (another division of the company) to work in a prosperous cash-rich environment. One of those researchers was Sir Godfrey Hounsfield, an electrical and computer engineer. 


In 1967, he started his work on what would soon become the first CT scanner. By directing x-ray beams through the body at 1 degree angles, with a detector rotating in tandem on the other side, he was able to measure the attenuation of x-rays. These values were then analysed using a mathematical algorithm and a computer to yield a 2-D image of the interior of the body. The production of CT scanners by EMI started in the early 1970s and their monopoly ended by 1975 when companies like DISCO (not even kidding) and GE entered the arena.


Interestingly, in the 1960s Dr Allan Cormack of South Africa had also independently showed similar results to Housfield. In the end, Cormack was cited for his math analysis that led to the CT scan and Housfield for its practical development. They shared the Nobel prize in Physics and Medicine in 1979. Cool.

Now for the fun part (see the rules here), using mop-top in a sentence by the end of the day:

Serious: Who would have thought the success of the mop-top Fab Four would be instrumental in the development of the CT scanner?

Less serious: Hey Bob, I went for my head CT scan today and something weird happened. I went in bald and came out with a mop-top! Is that normal?…

Listen to With a Little Help from My Friends from The Beatles to decompress and…

…I’ll see you in the blogosphere.

Pascal Tyrrell


MiWORD of the day is… Piezoelectric!

Ah, the super villain Livewire. Not sure she was all that much of a challenge for Superman but there you have it: electricity, spandex, and crazy hair. The perfect foe. I wonder if she will make an appearance in the latest Supergirl TV series?


So, today the MiWORD of the day is piezoelectric. Sounds like a fancy name for a downtown pizzaria – but it’s not. Way back before Roentgen discovered x-rays, Pierre and Jacques Curie in 1877 discovered a phenomenon that occurs when crystals are mechanically distorted by external pressure so that an electrical potential develops between the crystal surfaces: the piezoelectric effect. The term was coined by the brothers from the Greek for “pressure-electricity”. So basically, certain crystals (which include quartz, topaz, tourmaline…) can convert electrical to mechanical energy and vice versa.


Why is this important you ask? Well, because this discovery lead to the development of microphones, earphones, and most importantly for us – ultrasound. Based on the physics of sound and not light, ultrasound captures images by manipulating and analyzing sound waves, very high-frequency sound waves as they bounce off surfaces and echo back to the sender. The idea of getting some kind of image from sound waves was first thought of after the sinking of the Titanic in 1912: detecting submerged icebergs with sound reflection.



A little later, in Austria, two brothers Karl and Friedreich Dussik (do you see a trend here?) transmitted sound waves through a patient’s head in 1937. This and then the development of the SONAR (sound navigation and ranging) in WWII was the ground work needed to launch the field of ultrasonography. It would take, however, 20 years after WWII for ultrasonography to become a commercial reality.







Not only is ultrasound one the oldest medical imaging technologies but it is also an important tool for visualizing soft tissue structures in medical diagnosis, follow up of disease processes and pregnancies. Cool.

 


 


 

 





Now for the fun part (see the rules here), using piezoelectric in a sentence by the end of the day:

Serious: Mom went for her ultrasound today. Told me that I am going to have a little baby sister! She had to wait a while to have her scan because the piezoelectric transducer was on the fritz – again.


Less serious: Hey Bob, do you remember a pizza place on Electric Avenue in Calgary? Piezoelectric something or other? All closed down now. What a shame…




Listen to Electric Avenue from Eddy Grant to decompress and…

…I’ll see you in the blogosphere.

Pascal Tyrrell